English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  On the linkage between the Asian summer monsoon and tropopause fold activity over the eastern Mediterranean and the Middle East

Tyrlis, E., Škerlak, B., Sprenger, M., Wernli, H., Zittis, G., & Lelieveld, J. (2014). On the linkage between the Asian summer monsoon and tropopause fold activity over the eastern Mediterranean and the Middle East. Journal of Geophysical Research-Atmospheres, 119(6), 3202-3221. doi:10.1002/2013JD021113.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Tyrlis, Evangelos1, Author
Škerlak, Bojan1, Author
Sprenger, Michael1, Author
Wernli, Heini1, Author
Zittis, George1, Author
Lelieveld, Jos2, Author           
Affiliations:
1external, ou_persistent22              
2Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society, ou_1826285              

Content

show
hide
Free keywords: -
 Abstract: A climatology of tropopause folds occurring over the Eastern Mediterranean and the Middle East (EMME) has been established using the ERA-Interim reanalyses for the years 1979-2012. The methodology employs an algorithm that detects folds at grid points where the vertical profile features multiple crossings of the dynamical tropopause and allows their classification according to their vertical extent. Our results confirm the findings of an earlier 1 year climatology that recognized a global "hot spot" of summertime fold activity between the eastern Mediterranean and central Asia, in the vicinity of the subtropical jet. Two distinct maxima of activity are identified over Turkey and Iran-Afghanistan where fold frequency exceeds 25%. Occasionally, medium and deep folds form over the two regions at surprisingly low latitudes. This summertime peak in fold activity diverges from the zonal mean seasonal cycle over the subtropics and is driven by the South Asian Monsoon. Starting in late spring, the EMME is gradually brought under the influence of the zonally asymmetric background state induced by the monsoon. As areas of sharply sloping isentropes develop especially over the eastern Mediterranean and Iran-Afghanistan, subsidence and fold formation are favored. Further investigation of the reanalysis data provided empirical evidence that the monsoon also drives the interannual variability of EMME fold activity. An upward trend in fold activity is identified, especially in May, attributed to the recent advanced monsoon onset and the deepening convective activity throughout summer, which promotes upper-level baroclinicity over the EMME and favors folding.

Details

show
hide
Language(s):
 Dates: 2014
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: ISI: 000336046600029
DOI: 10.1002/2013JD021113
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Geophysical Research-Atmospheres
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Washington, D.C. : American Geophysical Union
Pages: - Volume / Issue: 119 (6) Sequence Number: - Start / End Page: 3202 - 3221 Identifier: ISSN: 0148-0227
CoNE: https://pure.mpg.de/cone/journals/resource/991042728714264_1