English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Sterile Neutrinos in Extra Dimensions as Warm Dark Matter Candidates

Stachurska, J. (2014). Sterile Neutrinos in Extra Dimensions as Warm Dark Matter Candidates. Master Thesis, Ruprecht-Karls-Universität, Heidelberg.

Item is

Files

show Files
hide Files
:
JStachurska_Masterarbeit-1.pdf (Publisher version), 2MB
Name:
JStachurska_Masterarbeit-1.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Stachurska, Juliana1, Author           
Affiliations:
1Werner Rodejohann - ERC Starting Grant, Junior Research Groups, MPI for Nuclear Physics, Max Planck Society, ou_907556              

Content

show
hide
Free keywords: -
 Abstract: Many years after it has been established that most of the matter density in the universe is made up of some form of dark matter, its nature remains a mystery. The consensus is that dark matter is non-baryonic, and for a long time it was widely believed that it has to be dynamically cold to allow for structure formation at early times in the universe. However, it now seems like warm dark matter may alleviate tensions between observations and simulations based on theoretical predictions from cold dark matter driven structure formation, especially on smaller, sub-galactic scales. Sterile neutrinos arise in a variety of extensions of the Standard Model of particle physics, and can be used to generate a neutrino mass term or account for short baseline oscillation anomalies depending on their mass in the given scenario. They are also very good candidates for warm dark matter. Here, we present one such Standard Model extension, featuring a large compactified extra dimension, and study how the tower of sterile neutrino Kaluza- Klein modes arising in this setting affects the sterile neutrino properties. In particular, we focus on its inuence on the sterile neutrino abundance, if it is to match the dark matter abundance, and possible signatures both in astrophysical observations and in nuclear β-decay. We find that the extra dimensional setting only insignificantly changes both production and signatures of sterile neutrinos, and conclude that if existing, the additional Kaluza-Klein modes will most likely remain hidden for many years to come.

Details

show
hide
Language(s):
 Dates: 2014
 Publication Status: Accepted / In Press
 Pages: 70 S. : Ill., graph. Darst.
 Publishing info: Heidelberg : Ruprecht-Karls-Universität
 Table of Contents: -
 Rev. Type: -
 Identifiers: -
 Degree: Master

Event

show

Legal Case

show

Project information

show

Source

show