de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Encodings of Range Maximum-Sum Segment Queries and Applications

Gawrychowski, P., & Nicholson, P. K. (2014). Encodings of Range Maximum-Sum Segment Queries and Applications. Retrieved from http://arxiv.org/abs/1410.2847.

Item is

Basisdaten

einblenden: ausblenden:
Datensatz-Permalink: http://hdl.handle.net/11858/00-001M-0000-0024-4465-5 Versions-Permalink: http://hdl.handle.net/11858/00-001M-0000-0024-AA73-E
Genre: Forschungspapier

Dateien

einblenden: Dateien
ausblenden: Dateien
:
arXiv:1410.2847.pdf (Preprint), 488KB
Beschreibung:
File downloaded from arXiv at 2014-12-01 10:14
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Gawrychowski, Paweł1, Autor              
Nicholson, Patrick K.1, Autor              
Affiliations:
1Algorithms and Complexity, MPI for Informatics, Max Planck Society, escidoc:24019              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Computer Science, Data Structures and Algorithms, cs.DS
 Zusammenfassung: Given an array A containing arbitrary (positive and negative) numbers, we consider the problem of supporting range maximum-sum segment queries on A: i.e., given an arbitrary range [i,j], return the subrange [i' ,j' ] \subseteq [i,j] such that the sum of the numbers in A[i'..j'] is maximized. Chen and Chao [Disc. App. Math. 2007] presented a data structure for this problem that occupies {\Theta}(n) words, can be constructed in {\Theta}(n) time, and supports queries in {\Theta}(1) time. Our first result is that if only the indices [i',j'] are desired (rather than the maximum sum achieved in that subrange), then it is possible to reduce the space to {\Theta}(n) bits, regardless the numbers stored in A, while retaining the same construction and query time. We also improve the best known space lower bound for any data structure that supports range maximum-sum segment queries from n bits to 1.89113n - {\Theta}(lg n) bits, for sufficiently large values of n. Finally, we provide a new application of this data structure which simplifies a previously known linear time algorithm for finding k-covers: i.e., given an array A of n numbers and a number k, find k disjoint subranges [i_1 ,j_1 ],...,[i_k ,j_k ], such that the total sum of all the numbers in the subranges is maximized.

Details

einblenden:
ausblenden:
Sprache(n): eng - Englisch
 Datum: 2014-10-102014-11-242014-11-24
 Publikationsstatus: Online publiziert
 Seiten: 20 pages + 2 page appendix, 4 figures. This version: corrected a few typos and metadata
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: arXiv: 1410.2847
URI: http://arxiv.org/abs/1410.2847
BibTex Citekey: DBLP:journals/corr/NicholsonG14
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle

einblenden: