English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Electronic Properties, Band Structure, and Fermi Surface Instabilities of Ni1+/Ni2+ Nickelate La3Ni2O6, Isoelectronic with Superconducting Cuprates

Poltavets, V. V., Greenblatt, M., Fecher, G. H., & Felser, C. (2009). Electronic Properties, Band Structure, and Fermi Surface Instabilities of Ni1+/Ni2+ Nickelate La3Ni2O6, Isoelectronic with Superconducting Cuprates. Physical Review Letters, 102(4): 046405, pp. 1-4. doi:10.1103/PhysRevLett.102.046405.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Poltavets, Viktor V.1, Author
Greenblatt, Martha1, Author
Fecher, Gerhard H.1, Author
Felser, Claudia2, Author           
Affiliations:
1external, ou_persistent22              
2External Organizations, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: Electronic structure calculations were performed for the mixed-valent Ni1+/Ni2+ nickelate La3Ni2O6, which exhibits electronic instabilities of the Fermi surface similar to that of the isostructural superconducting La2CaCu2O6 cuprate. La3Ni2O6 shows activated hopping, which fits to Mott's variable-range-hopping model with localized states near the Fermi level. However, a simple local spin density approximation calculation leads to a metallic ground state. The calculations including local density approximation+Hubbard U and hybrid functionals indicate a multiply degenerate magnetic ground state. For electron-doped La2ZrNi2O6, which is isoelectronic with La2CaCu2O6, an antiferromagnetic insulating ground state is found when correlations are included. The nickelates are thus ideal model systems for a deeper understanding of correlated transition metal compounds, magnetism, and superconductivity.

Details

show
hide
Language(s):
 Dates: 2009-01-28
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Physical Review Letters
  Other : Phys. Rev. Lett.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Woodbury, N.Y. : American Physical Society
Pages: - Volume / Issue: 102 (4) Sequence Number: 046405 Start / End Page: 1 - 4 Identifier: ISSN: 0031-9007
CoNE: https://pure.mpg.de/cone/journals/resource/954925433406_1