de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Carbon-Based Yolk–Shell Materials for Fuel Cell Applications

Galeano Nunez, D. C., Baldizzone, C., Bongard, H.-J., Spliethoff, B., Weidenthaler, C., Meier, J. C., et al. (2014). Carbon-Based Yolk–Shell Materials for Fuel Cell Applications. Advanced Functional Materials, 24(2), 220-232. doi:10.1002/adfm.201302239.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-0015-8459-1 Version Permalink: http://hdl.handle.net/11858/00-001M-0000-0024-432E-9
Genre: Journal Article

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Galeano Nunez, Diana Carolina1, Author              
Baldizzone, Claudio2, Author              
Bongard, Hans-Josef3, Author              
Spliethoff, Bernd3, Author              
Weidenthaler, Claudia4, Author              
Meier, J. C.2, Author              
Mayrhofer, Karl Johann Jakob2, Author              
Schüth, Ferdi1, Author              
Affiliations:
1Research Department Schüth, Max-Planck-Institut für Kohlenforschung, Max Planck Society, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, escidoc:1445589              
2Electrocatalysis, Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, Düsseldorf, escidoc:1863354              
3Service Department Lehmann (EMR), Max-Planck-Institut für Kohlenforschung, Max Planck Society, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, escidoc:1445625              
4Research Group Weidenthaler, Max-Planck-Institut für Kohlenforschung, Max Planck Society, escidoc:1950291              

Content

show
hide
Free keywords: electrocatalysis; platinum; gold; carbon; stability
 Abstract: The synthesis of yolk–shell catalysts, consisting of platinum or gold–platinum cores and graphitic carbon shells, and their electrocatalytic stabilities are described. Different encapsulation pathways for the metal nanoparticles are explored and optimized. Electrochemical studies of the optimized AuPt, @C catalyst revealed a high stability of the encapsulated metal particles. However, in order to reach full activity, several thousand potential cycles are required. After the electrochemical surface area is fully developed, the catalysts show exceptionally high stability, with almost no degradation over approximately 30 000 potential cycles between 0.4 and 1.4 VRHE.

Details

show
hide
Language(s): eng - English
 Dates: 2013-08-102014-01-15
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Method: -
 Identifiers: DOI: 10.1002/adfm.201302239
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Advanced Functional Materials
  Other : Adv. Funct. Mater.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Weinheim, D : Wiley VCH
Pages: - Volume / Issue: 24 (2) Sequence Number: - Start / End Page: 220 - 232 Identifier: ISSN: 1616-301X
CoNE: http://pubman.mpdl.mpg.de/cone/journals/resource/954925596563