English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Dissipative Dynamics in Many-Body Rydberg Systems

Schönleber, D. W. (2013). Dissipative Dynamics in Many-Body Rydberg Systems. Master Thesis, Ruprecht-Karls-Universität, Heidelberg.

Item is

Files

show Files
hide Files
:
thesis-schoenleber.pdf (Publisher version), 2MB
Name:
thesis-schoenleber.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Schönleber, David W.1, Author           
Affiliations:
1Division Prof. Dr. Christoph H. Keitel, MPI for Nuclear Physics, Max Planck Society,, ou_904546              

Content

show
hide
Free keywords: -
 Abstract: Inevitably present in many current experiments with ultracold Rydberg atoms, dissipative effects such as dephasing and decay modify the dynamics of the examined system. In this thesis, the dynamics of many-body Rydberg systems in the incoherent regime is studied numerically. Specifically, a wave function Monte Carlo (MCWF) technique is integrated into a coherent two-level many-body Rydberg model, allowing a numerical simulation of dissipative dynamics. This model is used to benchmark a steady-state rate equation model and assess its range of validity. In addition, incoherent, off-resonant excitation dynamics is studied in a one-dimensional disordered geometry. We find that our simulation results can essentially be explained by the equilibration time scale as well as — for positive laser detuning — resonant excitations arising when the laser detuning compensates the Rydberg interaction. Eventually, we employ a rate equation model to investigate excitation spectra for an experimental trap geometry, which we benchmark using the MCWF technique. Based on numerical data, we deduce that in the considered parameter regime the dominant excitation mechanism can be characterized as sequential growth of aggregates of Rydberg excitations around an initial seed. Our simulation results highlight the impact of incoherent effects on observables such as Rydberg population, excitation number fluctuation and pair correlation function.

Details

show
hide
Language(s):
 Dates: 2013-12
 Publication Status: Accepted / In Press
 Pages: 68 S. : Ill., graph. Darst.
 Publishing info: Heidelberg : Ruprecht-Karls-Universität
 Table of Contents: -
 Rev. Type: -
 Identifiers: -
 Degree: Master

Event

show

Legal Case

show

Project information

show

Source

show