Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  The Electronic Nature of the 1,4-β-Glycosidic Bond and Its Chemical Environment: DFT Insights into Cellulose Chemistry

Loerbroks, C., Rinaldi, R., & Thiel, W. (2013). The Electronic Nature of the 1,4-β-Glycosidic Bond and Its Chemical Environment: DFT Insights into Cellulose Chemistry. Chemistry - A European Journal, 19(48), 16282-16294. doi:10.1002/chem.201301366.

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
chem_201301366_sm_miscellaneous_information-1.pdf (Ergänzendes Material), 6MB
Name:
chem_201301366_sm_miscellaneous_information-1.pdf
Beschreibung:
Supporting Information
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
2013
Copyright Info:
Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Loerbroks, Claudia1, Autor           
Rinaldi, Roberto2, Autor           
Thiel, Walter1, Autor           
Affiliations:
1Research Department Thiel, Max-Planck-Institut für Kohlenforschung, Max Planck Society, ou_1445590              
2Research Group Rinaldi, Max-Planck-Institut für Kohlenforschung, Max Planck Society, ou_1445617              

Inhalt

einblenden:
ausblenden:
Schlagwörter: cellobiose · cellulose hydrolysis · computational chemistry · density functional calculations · NBO analysis
 Zusammenfassung: The molecular understanding of the chemistry of 1,4-β-glucans is essential for designing new approaches to the conversion of cellulose into platform chemicals and biofuels. In this endeavor, much attention has been paid to the role of hydrogen bonding occurring in the cellulose structure. So far, however, there has been little discussion about the implications of the electronic nature of the 1,4-β-glycosidic bond and its chemical environment for the activation of 1,4-β-glucans toward acid-catalyzed hydrolysis. This report sheds light on these central issues and addresses their influence on the acid hydrolysis of cellobiose and, by analogy, cellulose. The electronic structure of cellobiose was explored by DFT at the BB1 K/6-31++G(d,p) level. Natural bond orbital (NBO) analysis was performed to grasp the key bonding concepts. Conformations, protonation sites, and hydrolysis mechanisms were examined. The results for cellobiose indicate that cellulose is protected against hydrolysis not only by its supramolecular structure, as currently accepted, but also by its electronic structure, in which the anomeric effect plays a key role.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2013-08-132013-04-112013-10-182013-11-25
 Publikationsstatus: Erschienen
 Seiten: 13
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1002/chem.201301366
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Chemistry - A European Journal
  Andere : Chem. Eur. J.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Weinheim, Germany : VCH Verlagsgesellschaft
Seiten: 13 Band / Heft: 19 (48) Artikelnummer: - Start- / Endseite: 16282 - 16294 Identifikator: ISSN: 0947-6539
CoNE: https://pure.mpg.de/cone/journals/resource/954926979058