Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Ultrafast non-adiabatic dynamics of ethylene including Rydberg states

Sellner, B., Barbatti, M., Müller, T., Domcke, W., & Lischka, H. (2013). Ultrafast non-adiabatic dynamics of ethylene including Rydberg states. Molecular Physics, 111(16-17), 2439-2450. doi:10.1080/00268976.2013.813590.

Item is

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Sellner, Bernhard1, Autor
Barbatti, Mario2, Autor           
Müller, Thomas3, Autor
Domcke, Wolfgang4, Autor
Lischka, Hans1, 5, Autor
Affiliations:
1Institute for Theoretical Chemistry, University of Vienna, Vienna, Austria, ou_persistent22              
2Research Group Barbatti, Max-Planck-Institut für Kohlenforschung, Max Planck Society, ou_1445594              
3Institute for Advanced Simulation, Jülich Supercomputer Centre, Forschungszentrum Jülich, Jülich, Germany, ou_persistent22              
4Department of Chemistry, Technical University of Munich, ou_persistent22              
5Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: ethylene, surface hopping, semi-classical dynamics, ultrafast photodynamics, Rydberg states
 Zusammenfassung: The photodynamics of ethylene has been studied by means of ab initio surface-hopping dynamics using extended multireference configuration interaction wavefunctions. At the highest level, the explicit possibility of excited-state CH dissociation and consideration of the Rydberg π−3s state was included into the electronic wavefunction. The initial dynamics is characterised by the torsional motion and the crossing between the bright π−π * state with S 1, the latter having primarily Rydberg character with only a minor contribution of the repulsive valence π−σ * state. Due to back-rotation to planar structures after 17 fs, part of the population flows into the Rydberg states. The lifetime for this fraction of trajectories is significantly longer than that for the valence population. An analysis of the latter population shows that the decay to the ground state proceeds mainly at the pyramidalised conical intersection. Thus, no major qualitative mechanistic changes as compared to previous dynamics simulations are observed for the valence population. In the present work, a decay time of 62 fs was found for the valence population. Simulations performed for ethylene-d4 show a slowdown of the torsional mode. However, since the crossing seam is reached in a more direct way with less torsional oscillations, the excited-state lifetime is almost unchanged as compared to ethylene.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2013-06-142013-02-012013-06-032013-07-112013-09
 Publikationsstatus: Erschienen
 Seiten: 12
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1080/00268976.2013.813590
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Molecular Physics
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: London : Taylor & Francis
Seiten: 12 Band / Heft: 111 (16-17) Artikelnummer: - Start- / Endseite: 2439 - 2450 Identifikator: ISSN: 0026-8976
CoNE: https://pure.mpg.de/cone/journals/resource/954925264211