Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Probing the precipitation life cycle by iterative rain cell tracking

Moseley, C., Berg, P., & Haerter, J. O. (2013). Probing the precipitation life cycle by iterative rain cell tracking. Journal of Geophysical Research-Atmospheres, 118, 13361-13370. doi:10.1002/2013JD020868.

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
jgrd51026.pdf (Verlagsversion), 2MB
Name:
jgrd51026.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Moseley, Christopher1, Autor           
Berg, Peter, Autor
Haerter, J. O., Autor           
Affiliations:
1Climate Modelling, The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society, Bundesstraße 53, 20146 Hamburg, DE, ou_913569              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Clausius-Clapeyron relation; convective life cycle; extreme precipitation; radar analysis; rain cell tracking
 Zusammenfassung: Monitoring the life cycle of convective rain cells requires a Lagrangian viewpoint where the observer moves with the dominant background flow. To adopt such a moving reference frame, we design, validate, and apply a simple rain cell tracking method - which we term iterative rain cell tracking (IRT) - for spatio-temporal precipitation data. IRT iteratively identifies the formation and dissipation of rain cells and determines the large-scale flow. The iteration is repeated until reaching convergence. As validated using reanalysis wind speeds, repeated iterations lead to substantially increased agreement of the background flow field and an increased number of complete tracks. Our method is thereby able to monitor the growth and intensity profiles of rain cells and is applied to a high-resolution (5 min and 1×1 km2) data set of radar-derived rainfall intensities over Germany. We then combine this data set with surface temperature observations and synoptic observations to group tracks according to convective and stratiform conditions. Convective tracks show clear life cycles in intensity, with peaks shifted off-center toward the beginning of the track, whereas stratiform tracks have comparatively featureless intensity profiles. Our results show that the convective life cycle can lead to convection-dominating precipitation extremes at short time scales, while track-mean intensities may vary much less between the two types. The observed features become more pronounced as surface temperature increases, and in the case of convection even exceeded the rates expected from the Clausius-Clapeyron relation. Key Points Convective rain intensities can exceed stratiform rain on short timescales Temperature affects convection life cycle Stratiform events lack life cycle ©2013. American Geophysical Union. All Rights Reserved.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 20132013-12-27
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1002/2013JD020868
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Journal of Geophysical Research-Atmospheres
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Washington, D.C. : American Geophysical Union
Seiten: - Band / Heft: 118 Artikelnummer: - Start- / Endseite: 13361 - 13370 Identifikator: ISSN: 0148-0227
CoNE: https://pure.mpg.de/cone/journals/resource/991042728714264_1