English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Recent changes in glacial area and volume on Tuanjiefeng Peak Region of Qilian Mountains, China

Xu, J., Liu, S., Zhang, S., Guo, W., & Wang, J. (2013). Recent changes in glacial area and volume on Tuanjiefeng Peak Region of Qilian Mountains, China. PLoS One, 8: e70574. doi:10.1371/journal.pone.0070574.

Item is

Files

show Files
hide Files
:
journal.pone.0070574.pdf (Publisher version), 2MB
Name:
journal.pone.0070574.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Xu, Junli, Author
Liu, Shiyin, Author
Zhang, Shiqiang1, Author           
Guo, Wanqin, Author
Wang, Jian, Author
Affiliations:
1Terrestrial Hydrology, ou_913560              

Content

show
hide
Free keywords: DEGREE-DAY MODEL; ELEVATION CHANGES; NORTHWEST CHINA; HAILUOGOU GLACIER; RUNOFF CHANGES; CLIMATE-CHANGE; SRTM; ICE; IMPACT; PENETRATION
 Abstract: Glaciers' runoff in the Qilian Mountains serves as a critical water resource in the northern sections of the Gansu province, the northeastern sections of the Qinghai province, and the northeastern fringe of the Tibetan Plateau. Changes in the glacial area and volume around the highest peak of the Qilian Mountains, i.e., Tuanjiefeng Peak, were estimated using multi-temporal remote-sensing images and digital elevation models, and all possible sources of uncertainty were considered in detail. The total glacier area decreased by 16.1 +/- 6.34 km(2) (9.9 +/- 3.9%) during 1966 to 2010. The average annual glacier shrinkage was -0.15% a(-1) from 1966 to 1995, -0.61% a(-1) from 1995 to 2000, -0.20% a(-1) from 2000 to 2006, and -0.45% a(-1) from 2006 to 2010. A comparison of glacier surface elevations using digital elevation models derived from topographic maps in 1966 and from the Shuttle Radar Topography Mission in 1999 suggests that 65% of the grid cells has decreased, thereby indicating that the glacier thickness has declined. The average change in glacier thickness was -7.3 +/- 1.5 m (-0.21 +/- 0.04 m.a(-1)) from 1966 to 1999. Glaciers with northeastern aspects thinned by 8.3 +/- 1.4 m from 1966 to 1999, i.e., almost twice as much as those with southwestern aspects (4.3 +/- 1.3 m). The ice volume decreased by 11.72 +/- 2.38x10(8) m(3) from 1966 to 1999, which was about 17.4% more than the value calculated from the statistical relationship between glacier area and volume. The relationship between glacier area change and elevation zone indicates that glacier change is not only dominated by climate change but also affected by glacier dynamics, which are related to local topography. The varied response of a single glacier to climate change indicates that the glacier area change scheme used in some models must be improved.

Details

show
hide
Language(s): eng - English
 Dates: 2013-082013-08
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1371/journal.pone.0070574
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: PLoS One
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: San Francisco, CA : Public Library of Science
Pages: - Volume / Issue: 8 Sequence Number: e70574 Start / End Page: - Identifier: ISSN: 1932-6203
CoNE: https://pure.mpg.de/cone/journals/resource/1000000000277850