English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Multiannual changes of CO2 emissions in China: indirect estimates derived from satellite measurements of tropospheric NO2 columns

Berenzin, E. V., Konovalov, I. B., Ciais, P., Richter, A., Tao, S., Janssens-Maenhout, G., et al. (2013). Multiannual changes of CO2 emissions in China: indirect estimates derived from satellite measurements of tropospheric NO2 columns. Atmospheric Chemistry and Physics, 13, 9415-9438. doi:10.5194/acp-13-9415-2013.

Item is

Files

show Files
hide Files
:
BGC1923.pdf (Publisher version), 10MB
Name:
BGC1923.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-
:
BGC1923D.pdf (Publisher version), 5MB
Name:
BGC1923D.pdf
Description:
discussion paper
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Locator:
http://dx.doi.org/10.5194/acp-13-9415-2013 (Publisher version)
Description:
OA
OA-Status:

Creators

show
hide
 Creators:
Berenzin, E. V., Author
Konovalov, I. B., Author
Ciais, P., Author
Richter, A., Author
Tao, S., Author
Janssens-Maenhout, G., Author
Beekmann, M., Author
Schulze, Ernst Detlef1, Author           
Affiliations:
1Emeritus Group, Prof. E.-D. Schulze, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1497756              

Content

show
hide
Free keywords: -
 Abstract: Multiannual satellite measurements of tropospheric NO2 columns are used for evaluation of CO2 emission changes in China in the period from 1996 to 2008. Indirect top-down annual estimates of CO2 emissions are derived from the satellite NO2 column measurements by means of a simple inverse modeling procedure involving simulations performed with the CHIMERE mesoscale chemistry– transport model and the CO2-to-NOx emission ratios from the Emission Database for Global Atmospheric Research (EDGAR) global anthropogenic emission inventory and Regional Emission Inventory in Asia (REAS). Exponential trends in the normalized time series of annual emissions are evaluated separately for the periods from 1996 to 2001 and from 2001 to 2008. The results indicate that the both periods manifest strong positive trends in the CO2 emissions, and that the trend in the second period was significantly larger than the trend in the first period. Specifically, the trends in the first and second periods are best estimated to be in the range from 3.7 to 8.3 and from 11.0 to 13.2% per year, respectively, taking into account statistical uncertainties and differences between the CO2-to-NOx emission ratios from the EDGAR and REAS inventories. Comparison of our indirect top-down estimates of the CO2 emission changes with the corresponding bottom-up estimates provided by the EDGAR (version 4.2) and Global Carbon Project (GCP) glomal emission inventories reveals that while acceleration of the CO2 emission growth in the considered period is a common feature of both kinds of estimates, nonlinearity in the CO2 emission changes may be strongly exaggerated in the global emission inventories. Specifically, the atmospheric NO2 observations do not confirm the existence of a sharp bend in the emission inventory data time series in the period from 2000 to 2002. A significant quantitative difference is revealed between the bottom-up and indirect top-down estimates of the CO2 emission trend in the period from 1996 to 2001 (specifically, the trend was not positive according to the global emission inventories, but is strongly positive in our estimates). These results confirm the findings of earlier studies that indicated probable large uncertainties in the energy production and other activity data for China from international energy statistics used as the input information in the global emission inventories. For the period from 2001 to 2008, some quantitative differences between the different kinds of estimates are found to be in the range of possible systematic uncertainties associated with our estimation method. In general, satellite measurements of tropospheric NO2 are shown to be a useful source of information on CO2 sources collocated with sources of nitrogen oxides; the corresponding potential of these measurements should be exploited further in future studies

Details

show
hide
Language(s):
 Dates: 2013-08-092013-09-25
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: Other: BGC1923
DOI: 10.5194/acp-13-9415-2013
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Atmospheric Chemistry and Physics
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Katlenburg-Lindau, Germany : European Geosciences Union
Pages: - Volume / Issue: 13 Sequence Number: - Start / End Page: 9415 - 9438 Identifier: ISSN: 1680-7316
CoNE: https://pure.mpg.de/cone/journals/resource/111030403014016