English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  XUV-IR pump-probe experiments : exploring nuclear and electronic correlated quantum dynamics in the hydrogen molecule

Sperl, A. G. (2013). XUV-IR pump-probe experiments: exploring nuclear and electronic correlated quantum dynamics in the hydrogen molecule. PhD Thesis, Ruprecht-Karls-Universität, Heidelberg.

Item is

Files

show Files
hide Files
:
phd_sperl.pdf (Any fulltext), 19MB
Name:
phd_sperl.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Sperl, Alexander Georg1, Author           
Ullrich, Joachim, Referee
Wolf, Andreas, Referee
Affiliations:
1Division Prof. Dr. Joachim H. Ullrich, MPI for Nuclear Physics, Max Planck Society, ou_904547              

Content

show
hide
Free keywords: -
 Abstract: Wave packet dynamics and autoionization of doubly excited states in molecules can be studied by combining an intense, short-pulse infrared (IR) laser and a extreme ultraviolet (XUV) source with a Reaction Microscope, which allows for coincident measurements of ions and electrons. Furthermore, this detection system is capable of measuring the three dimensional momentum of each charged particle involved in the ionization process. This technique was used to investigate the autoionization of doubly excited H2 molecules, a process that occurs on a timescale of a few femtoseconds. Since this reaction time is of the order of the molecular motion, the nuclei can no longer be regarded as stationary. The coupling of the dissociation dynamics of H2+ to the corresponding electron, which is emitted through the autoionization of doubly excited states, leads to a symmetry breaking in the dissociation. In the conducted measurements, this translates into a localization of coincident electron-ion pairs. In order to study the temporal dynamics of these processes, the molecules were further probed with delayed IR pulses, revealing dynamics within the autoionization.

Details

show
hide
Language(s):
 Dates: 2013-02-08
 Publication Status: Accepted / In Press
 Pages: VII, 135 S. : Ill., graph. Darst.
 Publishing info: Heidelberg : Ruprecht-Karls-Universität
 Table of Contents: -
 Rev. Type: -
 Identifiers: -
 Degree: PhD

Event

show

Legal Case

show

Project information

show

Source

show