English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  A new lower bound technique for decision trees

Fleischer, R.(1992). A new lower bound technique for decision trees (MPI-I-92-125). Saarbrücken: Max-Planck-Institut für Informatik.

Item is

Files

show Files
hide Files
:
MPI-I-92-215__scan_ISTHPM7751_11032017-mitS8_mitOCR.pdf (Publisher version), 2MB
Name:
MPI-I-92-215__scan_ISTHPM7751_11032017-mitS8_mitOCR.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Fleischer, Rudolf1, Author           
Affiliations:
1Algorithms and Complexity, MPI for Informatics, Max Planck Society, ou_24019              

Content

show
hide
Free keywords: -
 Abstract: In this paper, we prove two general lower bounds for algebraic decision trees which test membership in a set $S\subseteq\Re^n$ which is defined by linear inequalities. Let $rank(S)$ be the maximal dimension of a linear subspace contained in the closure of $S$. % \endgraf First we prove that any decision tree which uses multilinear functions (i.e.~arbitrary products of linear functions) must have depth at least $n-rank(S)$. This solves an open question raised by A.C.~Yao and can be used to show that multilinear functions are not really more powerful than simple comparisons between the input variables when computing the largest $k$ elements of $n$ given numbers. Yao could only prove this result in the special case when products of at most two linear functions are used. Our proof is based on a dimension argument. It seems to be the first time that such an approach yields good lower bounds for nonlinear decision trees. % \endgraf Surprisingly, we can use the same methods to give an alternative proof for Rabin's fundamental Theorem, namely that the depth of any decision tree using arbitrary analytic functions is at least $n-rank(S)$. Since we show that Rabin's original proof is incorrect, our proof of Rabin's Theorem is not only the first correct one but also generalizes the Theorem to a wider class of functions.

Details

show
hide
Language(s): eng - English
 Dates: 1992
 Publication Status: Issued
 Pages: 21 p.
 Publishing info: Saarbrücken : Max-Planck-Institut für Informatik
 Table of Contents: -
 Rev. Type: -
 Identifiers: Report Nr.: MPI-I-92-125
BibTex Citekey: Fleischer_Report1992
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Research Report / Max-Planck-Institut für Informatik
Source Genre: Series
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: - Identifier: -