English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Quickest paths: faster algorithms and dynamization

Kargaris, D., Pantziou, G. E., Tragoudas, S., & Zaroliagis, C.(1994). Quickest paths: faster algorithms and dynamization (MPI-I-94-110). Saarbrücken: Max-Planck-Institut für Informatik.

Item is

Files

show Files
hide Files
:
MPI-I-94-110.pdf (Any fulltext), 123KB
Name:
MPI-I-94-110.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Kargaris, Dimitrios1, Author
Pantziou, Grammati E.1, Author
Tragoudas, Spyros1, Author
Zaroliagis, Christos2, Author           
Affiliations:
1External Organizations, ou_persistent22              
2Algorithms and Complexity, MPI for Informatics, Max Planck Society, ou_24019              

Content

show
hide
Free keywords: -
 Abstract: Given a network $N=(V,E,{c},{l})$, where $G=(V,E)$, $|V|=n$ and $|E|=m$, is a directed graph, ${c}(e) > 0$ is the capacity and ${l}(e) \ge 0$ is the lead time (or delay) for each edge $e\in E$, the quickest path problem is to find a path for a given source--destination pair such that the total lead time plus the inverse of the minimum edge capacity of the path is minimal. The problem has applications to fast data transmissions in communication networks. The best previous algorithm for the single pair quickest path problem runs in time $O(r m+r n \log n)$, where $r$ is the number of distinct capacities of $N$. In this paper, we present algorithms for general, sparse and planar networks that have significantly lower running times. For general networks, we show that the time complexity can be reduced to $O(r^{\ast} m+r^{\ast} n \log n)$, where $r^{\ast}$ is at most the number of capacities greater than the capacity of the shortest (with respect to lead time) path in $N$. For sparse networks, we present an algorithm with time complexity $O(n \log n + r^{\ast} n + r^{\ast} \tilde{\gamma} \log \tilde{\gamma})$, where $\tilde{\gamma}$ is a topological measure of $N$. Since for sparse networks $\tilde{\gamma}$ ranges from $1$ up to $\Theta(n)$, this constitutes an improvement over the previously known bound of $O(r n \log n)$ in all cases that $\tilde{\gamma}=o(n)$. For planar networks, the complexity becomes $O(n \log n + n\log^3 \tilde{\gamma}+ r^{\ast} \tilde{\gamma})$. Similar improvements are obtained for the all--pairs quickest path problem. We also give the first algorithm for solving the dynamic quickest path problem.

Details

show
hide
Language(s): eng - English
 Dates: 1994
 Publication Status: Issued
 Pages: 15 p.
 Publishing info: Saarbrücken : Max-Planck-Institut für Informatik
 Table of Contents: -
 Rev. Type: -
 Identifiers: URI: http://domino.mpi-inf.mpg.de/internet/reports.nsf/NumberView/94-110
Report Nr.: MPI-I-94-110
BibTex Citekey: KargarisPantziouTragoudasZaroliagis94
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Research Report / Max-Planck-Institut für Informatik
Source Genre: Series
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: - Identifier: -