English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Bicriteria job sequencing with release dates

Wang, Y.(1997). Bicriteria job sequencing with release dates (MPI-I-1997-1-005). Saarbrücken: Max-Planck-Institut für Informatik.

Item is

Files

show Files
hide Files
:
1997-1-005 (Any fulltext), 11KB
Name:
1997-1-005
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
text/html / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Wang, Yaoguang1, Author           
Affiliations:
1Algorithms and Complexity, MPI for Informatics, Max Planck Society, ou_24019              

Content

show
hide
Free keywords: -
 Abstract: We consider the single machine job sequencing problem with release dates. The main purpose of this paper is to investigate efficient and effective approximation algorithms with a bicriteria performance guarantee. That is, for some $(\rho_1, \rho_2)$, they find schedules simultaneously within a factor of $\rho_1$ of the minimum total weighted completion times and within a factor of $\rho_2$ of the minimum makespan. The main results of the paper are summarized as follows. First, we present a new $O(n\log n)$ algorithm with the performance guarantee $\left(1+\frac{1}{\beta}, 1+\beta\right)$ for any $\beta \in [0,1]$. For the problem with integer processing times and release dates, the algorithm has the bicriteria performance guarantee $\left(2-\frac{1}{p_{max}}, 2-\frac{1}{p_{max}}\right)$, where $p_{max}$ is the maximum processing time. Next, we study an elegant approximation algorithm introduced recently by Goemans. We show that its randomized version has expected bicriteria performance guarantee $(1.7735, 1.51)$ and the derandomized version has the guarantee $(1.7735, 2-\frac{1}{p_{max}})$. To establish the performance guarantee, we also use two LP relaxations and some randomization techniques as Goemans does, but take a different approach in the analysis, based on a decomposition theorem. Finally, we present a family of bad instances showing that it is impossible to achieve $\rho_1\leq 1.5$ with this LP lower bound.

Details

show
hide
Language(s): eng - English
 Dates: 1997
 Publication Status: Issued
 Pages: 18 p.
 Publishing info: Saarbrücken : Max-Planck-Institut für Informatik
 Table of Contents: -
 Rev. Type: -
 Identifiers: URI: http://domino.mpi-inf.mpg.de/internet/reports.nsf/NumberView/1997-1-005
Report Nr.: MPI-I-1997-1-005
BibTex Citekey: Wang1997
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Research Report / Max-Planck-Institut für Informatik
Source Genre: Series
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: - Identifier: -