English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Fully decidable logics, automata and classical theories for defining regular real-time languages

Henzinger, T. A., Raskin, J.-F., & Schobbens, P.-Y.(1999). Fully decidable logics, automata and classical theories for defining regular real-time languages (MPI-I-1999-3-003). Saarbrücken: Max-Planck-Institut für Informatik.

Item is

Files

show Files
hide Files
:
MPI-I-1999-3-003.pdf (Any fulltext), 709KB
Name:
MPI-I-1999-3-003.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Henzinger, Thomas A.1, Author
Raskin, Jean-Francois1, Author
Schobbens, Pierre-Yves1, Author
Affiliations:
1Reaktive und Hybride Systeme, ou_40045              

Content

show
hide
Free keywords: -
 Abstract: A specification formalism for reactive systems defines a class of $\omega$-languages. We call a specification formalism {\em fully decidable\/} if it is constructively closed under boolean operations and has a decidable satisfiability (nonemptiness) problem. There are two important, robust classes of $\omega$-languages that are definable by fully decidable formalisms. The {\sc $\omega$-regular languages\/} are definable by finite automata, or equivalently, by the Sequential Calculus. The {\sc counter-free $\omega$-regular languages\/} are definable by temporal logic, or equivalently, by the first-order fragment of the Sequential Calculus. The gap between both classes can be closed by finite counting (using automata connectives), or equivalently, by projection (existential second-order quantification over letters). A specification formalism for real-time systems defines a class of {\em timed\/} $\omega$-languages, whose letters have real-numbered time stamps. Two popular ways of specifying timing constraints rely on the use of clocks, and on the use of time bounds for temporal operators. However, temporal logics with clocks or time bounds have undecidable satisfiability problems, and finite automata with clocks (so-called {\em timed automata\/}) are not closed under complement. Therefore, two fully decidable restrictions of these formalisms have been proposed. In the first case, clocks are restricted to {\em event clocks}, which measure distances to immediately preceding or succeeding events only. In the second case, time bounds are restricted to {\em nonsingular intervals}, which cannot specify the exact punctuality of events. We show that the resulting classes of timed $\omega$-languages are robust, and we explain their relationship. First, we show that temporal logic with event clocks defines the same class of timed $\omega$-languages as temporal logic with nonsingular time bounds, and we identify a first-order monadic theory that also defines this class. Second, we show that if the ability of finite counting is added to these formalisms, we obtain the class of timed $\omega$-languages that are definable by finite automata with event clocks, or equivalently, by a restricted second-order extension of the monadic theory. Third, we show that if projection is added, we obtain the class of timed $\omega$-languages that are definable by timed automata, or equivalently, by the full second-order extension of the monadic theory. These results identify three robust classes of timed $\omega$-languages, of which the third, while popular, is not definable by a fully decidable formalism. By contrast, the first two classes are definable by fully decidable formalisms from temporal logic, from automata theory, and from monadic logic. Since the gap between these two classes can be closed by finite counting, we dub them the {\em timed $\omega$-regular languages\/} and the {\em timed counter-free $\omega$-regular languages}, respectively.

Details

show
hide
Language(s): eng - English
 Dates: 1999
 Publication Status: Issued
 Pages: 102 p.
 Publishing info: Saarbrücken : Max-Planck-Institut für Informatik
 Table of Contents: -
 Rev. Type: -
 Identifiers: Report Nr.: MPI-I-1999-3-003
BibTex Citekey: HenzingerRaskinSchobbens99
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Research Report / Max-Planck-Institut für Informatik
Source Genre: Series
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: - Identifier: -