English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Low-contention depth-first scheduling of parallel computations with synchronization variables

Fatourou, P.(2000). Low-contention depth-first scheduling of parallel computations with synchronization variables (MPI-I-2000-1-003). Saarbrücken: Max-Planck-Institut für Informatik.

Item is

Files

show Files
hide Files
:
2000-1-003 (Any fulltext), 12KB
Name:
2000-1-003
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
text/html / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Fatourou, Panagiota1, Author           
Affiliations:
1Algorithms and Complexity, MPI for Informatics, Max Planck Society, ou_24019              

Content

show
hide
Free keywords: -
 Abstract: In this paper, we present a randomized, online, space-efficient algorithm for the general class of programs with synchronization variables (such programs are produced by parallel programming languages, like, e.g., Cool, ID, Sisal, Mul-T, OLDEN and Jade). The algorithm achieves good locality and low scheduling overheads for this general class of computations, by combining work-stealing and depth-first scheduling. More specifically, given a computation with work $T_1$, depth $T_\infty$ and $\sigma$ synchronizations that its execution requires space $S_1$ on a single-processor computer, our algorithm achieves expected space complexity at most $S_1 + O(PT_\infty \log (PT_\infty))$ and runs in an expected number of $O(T_1/P + \sigma \log (PT_\infty)/P + T_\infty \log (PT_\infty))$ timesteps on a shared-memory, parallel machine with $P$ processors. Moreover, for any $\varepsilon > 0$, the space complexity of our algorithm is at most $S_1 + O(P(T_\infty + \ln (1/\varepsilon)) \log (P(T_\infty + \ln(P(T_\infty + \ln (1/\varepsilon))/\varepsilon))))$ with probability at least $1-\varepsilon$. Thus, even for values of $\varepsilon$ as small as $e^{-T_\infty}$, the space complexity of our algorithm is at most $S_1 + O(PT_\infty \log(PT_\infty))$, with probability at least $1-e^{-T_\infty}$. The algorithm achieves good locality and low scheduling overheads by automatically increasing the granularity of the work scheduled on each processor. Our results combine and extend previous algorithms and analysis techniques (published by Blelloch et. al [6] and by Narlikar [26]). Our algorithm not only exhibits the same good space complexity for the general class of programs with synchronization variables as its deterministic analog presented in [6], but it also achieves good locality and low scheduling overhead as the algorithm presented in [26], which however performs well only for the more restricted class of nested parallel computations.

Details

show
hide
Language(s): eng - English
 Dates: 2000
 Publication Status: Issued
 Pages: 56 p.
 Publishing info: Saarbrücken : Max-Planck-Institut für Informatik
 Table of Contents: -
 Rev. Type: -
 Identifiers: URI: http://domino.mpi-inf.mpg.de/internet/reports.nsf/NumberView/2000-1-003
Report Nr.: MPI-I-2000-1-003
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Research Report / Max-Planck-Institut für Informatik
Source Genre: Series
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: - Identifier: -