English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  On Steiner trees and minimum spanning trees in hypergraphs

Polzin, T., & Vahdati, S.(2001). On Steiner trees and minimum spanning trees in hypergraphs (MPI-I-2001-1-005). Saarbrücken: Max-Planck-Institut für Informatik.

Item is

Files

show Files
hide Files
:
2001-1-005 (Any fulltext), 11KB
Name:
2001-1-005
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
text/html / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Polzin, Tobias1, Author           
Vahdati, Siavash2, Author
Affiliations:
1Algorithms and Complexity, MPI for Informatics, Max Planck Society, ou_24019              
2External Organizations, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: The state-of-the-art algorithms for geometric Steiner problems use a two-phase approach based on full Steiner trees (FSTs). The bottleneck of this approach is the second phase (FST concatenation phase), in which an optimum Steiner tree is constructed out of the FSTs generated in the first phase. The hitherto most successful algorithm for this phase considers the FSTs as edges of a hypergraph and is based on an LP-relaxation of the minimum spanning tree in hypergraph (MSTH) problem. In this paper, we compare this original and some new relaxations of this problem and show their equivalence, and thereby refute a conjecture in the literature. Since the second phase can also be formulated as a Steiner problem in graphs, we clarify the relation of this MSTH-relaxation to all classical relaxations of the Steiner problem. Finally, we perform some experiments, both on the quality of the relaxations and on FST-concatenation methods based on them, leading to the surprising result that an algorithm of ours which is designed for general graphs is superior to the MSTH-approach.

Details

show
hide
Language(s): eng - English
 Dates: 2001
 Publication Status: Issued
 Pages: 15 p.
 Publishing info: Saarbrücken : Max-Planck-Institut für Informatik
 Table of Contents: -
 Rev. Type: -
 Identifiers: URI: http://domino.mpi-inf.mpg.de/internet/reports.nsf/NumberView/2001-1-005
Report Nr.: MPI-I-2001-1-005
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Research Report / Max-Planck-Institut für Informatik
Source Genre: Series
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: - Identifier: -