Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Temperature-dependent remineralization in a warming ocean increases surface pCO2 through changes in marine ecosystem composition

Segschneider, J., & Bendtsen, J. (2013). Temperature-dependent remineralization in a warming ocean increases surface pCO2 through changes in marine ecosystem composition. Global Biogeochemical Cycles, 27, 1214-1225. doi:10.1002/2013GB004684.

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
gbc20111.pdf (Verlagsversion), 13MB
Name:
gbc20111.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Segschneider, Joachim1, Autor           
Bendtsen, J., Autor
Affiliations:
1Ocean Biogeochemistry, The Ocean in the Earth System, MPI for Meteorology, Max Planck Society, ou_913556              

Inhalt

einblenden:
ausblenden:
Schlagwörter: remineralisation; ocean; carbon cycle; ecosystem; climate change
 Zusammenfassung: Temperature-dependent remineralization of organic matter is, in general, not included in marine biogeochemistry models currently used for CMIP5 climate projections. Associated feedbacks have therefore not been quantified. In this study we aim at investigating how temperature dependent remineralization rates (Q10 = 2) in a warming ocean impact on the marine carbon cycle, and if this may weaken the oceanic sink for anthropogenic CO2. We perturb an Earth system model used for CMIP5 with temperature-dependent remineralization rates of organic matter using RCP8.5 derived temperature anomalies for 2100. The result is a modest change of organic carbon export but also derived effects associated with feedback processes between changed nutrient concentrations and ecosystem structure. As more nutrients are recycled in the euphotic layer, increased primary production causes a depletion of silicate in the surface layer as opal is exported to depth more efficiently than POC. Shifts in the ecosystem occur as diatoms find less favorable conditions. Export production of calcite shells increases causing a decrease in alkalinity and higher surface pCO2. With regard to future climate projections the results indicate a reduction of oceanic uptake of anthropogenic CO2 of about 0.2 PgC yr-1 toward the end of the 21st century in addition to reductions caused by already identified climate-carbon cycle feedbacks. Similar shifts in the ecosystem as identified here, but driven by external forcing, have been proposed to drive glacial/interglacial changes in atmospheric pCO2. We propose a similar positive feedback between climate perturbations and the global carbon cycle but driven solely by internal biogeochemical processes.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2013-072013-11-102013-11-132013-12
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1002/2013GB004684
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Global Biogeochemical Cycles
  Andere : Glob. Biogeochem. Cycle
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Washington, DC : American Geophysical Union
Seiten: - Band / Heft: 27 Artikelnummer: - Start- / Endseite: 1214 - 1225 Identifikator: ISSN: 0886-6236
CoNE: https://pure.mpg.de/cone/journals/resource/954925553383