English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Temperature-dependent remineralization in a warming ocean increases surface pCO2 through changes in marine ecosystem composition

Segschneider, J., & Bendtsen, J. (2013). Temperature-dependent remineralization in a warming ocean increases surface pCO2 through changes in marine ecosystem composition. Global Biogeochemical Cycles, 27, 1214-1225. doi:10.1002/2013GB004684.

Item is

Files

show Files
hide Files
:
gbc20111.pdf (Publisher version), 13MB
Name:
gbc20111.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Segschneider, Joachim1, Author           
Bendtsen, J., Author
Affiliations:
1Ocean Biogeochemistry, The Ocean in the Earth System, MPI for Meteorology, Max Planck Society, ou_913556              

Content

show
hide
Free keywords: remineralisation; ocean; carbon cycle; ecosystem; climate change
 Abstract: Temperature-dependent remineralization of organic matter is, in general, not included in marine biogeochemistry models currently used for CMIP5 climate projections. Associated feedbacks have therefore not been quantified. In this study we aim at investigating how temperature dependent remineralization rates (Q10 = 2) in a warming ocean impact on the marine carbon cycle, and if this may weaken the oceanic sink for anthropogenic CO2. We perturb an Earth system model used for CMIP5 with temperature-dependent remineralization rates of organic matter using RCP8.5 derived temperature anomalies for 2100. The result is a modest change of organic carbon export but also derived effects associated with feedback processes between changed nutrient concentrations and ecosystem structure. As more nutrients are recycled in the euphotic layer, increased primary production causes a depletion of silicate in the surface layer as opal is exported to depth more efficiently than POC. Shifts in the ecosystem occur as diatoms find less favorable conditions. Export production of calcite shells increases causing a decrease in alkalinity and higher surface pCO2. With regard to future climate projections the results indicate a reduction of oceanic uptake of anthropogenic CO2 of about 0.2 PgC yr-1 toward the end of the 21st century in addition to reductions caused by already identified climate-carbon cycle feedbacks. Similar shifts in the ecosystem as identified here, but driven by external forcing, have been proposed to drive glacial/interglacial changes in atmospheric pCO2. We propose a similar positive feedback between climate perturbations and the global carbon cycle but driven solely by internal biogeochemical processes.

Details

show
hide
Language(s): eng - English
 Dates: 2013-072013-11-102013-11-132013-12
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1002/2013GB004684
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Global Biogeochemical Cycles
  Other : Glob. Biogeochem. Cycle
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Washington, DC : American Geophysical Union
Pages: - Volume / Issue: 27 Sequence Number: - Start / End Page: 1214 - 1225 Identifier: ISSN: 0886-6236
CoNE: https://pure.mpg.de/cone/journals/resource/954925553383