Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Efficient metabolic pathway engineering in transgenic tobacco and tomato plastids with synthetic multigene operons

Lu, Y., Rijzaani, H., Karcher, D., Ruf, S., & Bock, R. (2013). Efficient metabolic pathway engineering in transgenic tobacco and tomato plastids with synthetic multigene operons. In Proceedings of the National Academy of Sciences of the United States of America (pp. E623-E632).

Item is

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Lu, Y.1, Autor           
Rijzaani, H.2, Autor
Karcher, D.1, Autor           
Ruf, S.1, Autor           
Bock, R.1, Autor           
Affiliations:
1Organelle Biology and Biotechnology, Department Bock, Max Planck Institute of Molecular Plant Physiology, Max Planck Society, ou_1753326              
2External Organizations, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: The engineering of complex metabolic pathways requires the concerted expression of multiple genes. In plastids (chloroplasts) of plant cells, genes are organized in operons that are coexpressed as polycistronic transcripts and then often are processed further into monocistronic mRNAs. Here we have used the tocochromanol pathway (providing tocopherols and tocotrienols, collectively also referred to as "vitamin E") as an example to establish principles of successful multigene engineering by stable transformation of the chloroplast genome, a technology not afflicted with epigenetic variation and/or instability of transgene expression. Testing a series of single-gene constructs (encoding homogentisate phytyltransferase, tocopherol cyclase, and gamma-tocopherol methyltransferase) and rationally designed synthetic operons in tobacco and tomato plants, we (i) confirmed previous results suggesting homogentisate phytyltransferase as the limiting enzymatic step in the pathway, (ii) comparatively characterized the bottlenecks in tocopherol biosynthesis in transplastomic leaves and tomato fruits, and (iii) achieved an up to tenfold increase in total tocochromanol accumulation. In addition, our results uncovered an unexpected light-dependent regulatory link between tocochromanol metabolism and the pathways of photosynthetic pigment biosynthesis. The synthetic operon design developed here will facilitate future synthetic biology applications in plastids, especially the design of artificial operons that introduce novel biochemical pathways into plants.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2013
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: Anderer: 23382222
DOI: 10.1073/pnas.1216898110
URI: http://www.ncbi.nlm.nih.gov/pubmed/23382222
 Art des Abschluß: -

Veranstaltung

einblenden:
ausblenden:
Titel: Proceedings of the National Academy of Sciences of the United States of America
Veranstaltungsort: -
Start-/Enddatum: -

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Proceedings of the National Academy of Sciences of the United States of America
Genre der Quelle: Konferenzband
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: - Artikelnummer: - Start- / Endseite: E623 - E632 Identifikator: -