English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  The MAP2/Tau family of microtubule-associated proteins

Dehmelt, L., & Halpain, S. (2004). The MAP2/Tau family of microtubule-associated proteins. Genome Biology, 6(1): 1, pp. 204.1-204.10. Retrieved from http://genomebiology.com/2004/6/1/204.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Dehmelt, Leif1, Author           
Halpain, Shelley, Author
Affiliations:
1Abt. II: Systemische Zellbiologie, Max Planck Institute of Molecular Physiology, Max Planck Society, ou_1753288              

Content

show
hide
Free keywords: Animals; Evolution, Molecular; Gene Expression Regulation; *Microtubule-Associated; Proteins/chemistry/classification/genetics/metabolism; Neurons/metabolism; *tau Proteins/chemistry/classification/genetics/metabolism
 Abstract: Microtubule-associated proteins (MAPs) of the MAP2/Tau family include the vertebrate proteins MAP2, MAP4, and Tau and homologs in other animals. All three vertebrate members of the family have alternative splice forms; all isoforms share a conserved carboxy-terminal domain containing microtubule-binding repeats, and an amino-terminal projection domain of varying size. MAP2 and Tau are found in neurons, whereas MAP4 is present in many other tissues but is generally absent from neurons. Members of the family are best known for their microtubule-stabilizing activity and for proposed roles regulating microtubule networks in the axons and dendrites of neurons. Contrary to this simple, traditional view, accumulating evidence suggests a much broader range of functions, such as binding to filamentous (F) actin, recruitment of signaling proteins, and regulation of microtubule-mediated transport. Tau is also implicated in Alzheimer's disease and other dementias. The ability of MAP2 to interact with both microtubules and F-actin might be critical for neuromorphogenic processes, such as neurite initiation, during which networks of microtubules and F-actin are reorganized in a coordinated manner. Various upstream kinases and interacting proteins have been identified that regulate the microtubule-stabilizing activity of MAP2/Tau family proteins.

Details

show
hide
Language(s): eng - English
 Dates: 2004-12-23
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: eDoc: 411005
URI: http://genomebiology.com/2004/6/1/204
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Genome Biology
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 6 (1) Sequence Number: 1 Start / End Page: 204.1 - 204.10 Identifier: ISSN: 1465-6914 (Electronic)