Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Toward Highly Stable Electrocatalysts via Nanoparticle Pore Confinement

Galeano Nunez, D. C., Meier, J. C., Peinecke, V., Bongard, H.-J., Katsounaros, I., Topalov, A. A., et al. (2012). Toward Highly Stable Electrocatalysts via Nanoparticle Pore Confinement. Journal of the American Chemical Society, 134(50), 20457-20465. doi:10.1021/ja308570c.

Item is

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Galeano Nunez, Diana Carolina1, Autor           
Meier, Josef C. 2, Autor
Peinecke, Volker3, Autor
Bongard, Hans-Josef4, Autor           
Katsounaros, Ionnis2, Autor
Topalov, Angel A.2, 5, Autor
Lu, A.H.6, Autor
Mayrhofer, Karl J. J. 2, Autor
Schüth, Ferdi1, Autor           
Affiliations:
1Research Department Schüth, Max-Planck-Institut für Kohlenforschung, Max Planck Society, D-45470 Mülheim an der Ruhr, ou_1445589              
2Max Planck Inst Eisenforsch GmbH, Dept Interface Chem & Surface Engn, D-40237 Dusseldorf, Germany, ou_persistent22              
3Fuel Cell Res Ctr ZBT GmbH, D-47057 Duisburg, Germany, ou_persistent22              
4Service Department Lehmann (EMR), Max-Planck-Institut für Kohlenforschung, Max Planck Society, D-45470 Mülheim an der Ruhr, ou_1445625              
5Ruhr Univ Bochum, Ctr Electrochem Sci, D-44780 Bochum, Germany, ou_persistent22              
6Dalian Univ Technol, State Key Lab Fine Chem, Dalian 116024, Peoples R China , ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: OXYGEN REDUCTION REACTION; MEMBRANE FUEL-CELL; CATHODE CATALYST SUPPORT; MESOPOROUS CARBONS; ELECTROLYTE; PLATINUM; DEGRADATION; TEMPERATURE; DURABILITY; NANOCATALYSTS
 Zusammenfassung: The durability of electrode materials is a limiting parameter for many electrochemical energy conversion systems. In particular, electrocatalysts for the essential oxygen reduction reaction (ORR) present some of the most challenging instability issues shortening their practical lifetime. Here, we report a mesostructured graphitic carbon support, Hollow Graphitic Spheres (HGS) with a specific surface area exceeding 1000 m(2) g(-1) and precisely controlled pore structure, that was specifically developed to overcome the long-term catalyst degradation, while still sustaining high activity. The synthetic pathway leads to platinum nanoparticles of approximately 3 to 4 nm size encapsulated in the HGS pore structure that are stable at 850 degrees C and, more importantly, during simulated accelerated electrochemical aging. Moreover, the high stability of the cathode electrocatalyst is also retained in a fully assembled polymer electrolyte membrane fuel cell (PEMFC). Identical location scanning and scanning transmission electron microscopy (IL-SEM and IL-STEM) conclusively proved that during electrochemical cycling the encapsulation significantly suppresses detachment and agglomeration of Pt nanoparticles, two of the major degradation mechanisms in fuel cell catalysts of this particle size. Thus, beyond providing an improved electrocatalyst, this study describes the blueprint for targeted improvement of fuel cell catalysts by design of the carbon support.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2012-12-19
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1021/ja308570c
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Journal of the American Chemical Society
  Andere : J. Am. Chem. Soc.ABBREVIATION
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Washington, DC : AMER CHEMICAL SOC, 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
Seiten: - Band / Heft: 134 (50) Artikelnummer: - Start- / Endseite: 20457 - 20465 Identifikator: ISSN: 0002-7863
CoNE: https://pure.mpg.de/cone/journals/resource/954925376870