English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Neural dynamics in cortex-striatum co-cultures: 1. Anatomy and electrophysiology of neuronal cell types

D, P., & A, A. (1996). Neural dynamics in cortex-striatum co-cultures: 1. Anatomy and electrophysiology of neuronal cell types. Neuroscience, 70(4), 861-891. doi:10.1016/0306-4522(95)00406-8.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
D, Plenz1, Author
A, Aertsen, Author
Affiliations:
1External Organizations, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: An in vitro system was established to analyse corticostriatal processing. Cortical and striatal slices taken at postnatal days 0–2 were co-cultured for three to six weeks. The anatomy of the organotypic co-cultures was determined using immunohistochemistry. In the cortex parvalbumin-positive and calbindin-positive cells, which resembled those seen in vivo, had laminar distributions. In the striatum, strongly stained parvalbumin-positive cells resembling striatal GABAergic interneurons and cholinergic interneurons were scattered throughout the tissue. The soma area of these iterneuron classes was larger than the average striatal soma area, thus enabling visual selections of cells by class before recording. Cortical neurons with projections to the striatum showed similar morphological features to corticostriatal projection neurons in vivo. No projections from the striatum to the cortex were found. Intracellular recordings were obtained from 94 neurons. These were first classified on the basis of electrophysiological characteristics and the morphologies of cells in each class were reconstructed. Two types of striatal secondary neurons with unique electrophysiological dynamics were identified: GABAergic interneurons (n = 17) and large aspiny, probably cholinergic, interneurons (n = 15). The electrophysiological and morphological characteristics of cortical pyramidal cells (n = 27), cortical interneurons (n = 1), as well as striatal principal neurons (n = 34), were identical to those reported for similar ages in vivo. Organotypic cortex-striatum co-cultures are therefore suitable as an in vitro system in which to analyse corticostriatal processing. The network dynamics, which developed spontaneously in that system, are examined in the companion paper.

Details

show
hide
Language(s):
 Dates: 1996-02
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Neuroscience
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 70 (4) Sequence Number: - Start / End Page: 861 - 891 Identifier: -