English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Evoked excitability changes at the terminals of midlumbar premotor interneurons in the cat spinal cord

Aggelopoulos, N., Chakrabarty, S., & Edgley, S. (1997). Evoked excitability changes at the terminals of midlumbar premotor interneurons in the cat spinal cord. Journal of Neuroscience, 17(4), 1512-1518. Retrieved from http://www.jneurosci.org/content/17/4/1512.long.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Aggelopoulos, NC1, Author           
Chakrabarty, S, Author
Edgley, SA, Author
Affiliations:
1Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497798              

Content

show
hide
Free keywords: -
 Abstract: We present evidence that the electrical excitability of the terminals of a group of spinal premotor interneurons can be increased after stimulation of sensory afferents. The interneurons were located in the midlumbar segments of the spinal cord and had projections to the lower lumbar motor nuclei. Thresholds for antidromic activation of a substantial number of interneurons were reduced after electrical stimulation of group II muscle afferents. Several observations suggest that the excitability changes are unlikely to have arisen from electrotonic spread of depolarization from the interneuron soma to its terminals or by environmental changes in the vicinity of the terminals related to neuronal activity. A particularly interesting possibility is that the excitability of the central terminals of the interneurons is increased because they are depolarized by a mechanism similar to that acting at the terminals of primary sensory afferents (primary afferent depolarization, PAD), which accompanies one type of presynaptic inhibition. This type of presynaptic action has been shown in premotor interneurons in the lamprey but not in the mammalian spinal cord. From our observations the organization of the systems generating excitability changes at the interneuron terminals seem in general to parallel the organization of the systems generating PAD at afferent terminals, raising the possibility that common principles might underlie the operation of this form of presynaptic control.

Details

show
hide
Language(s):
 Dates: 1997-02
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: URI: http://www.jneurosci.org/content/17/4/1512.long
BibTex Citekey: 6201
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Neuroscience
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 17 (4) Sequence Number: - Start / End Page: 1512 - 1518 Identifier: -