English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Contextual influence on orientation discrimination of humans and responses of neurons in V1 of alert monkeys

Li, W., Thier, P., & Wehrhahn, C. (2000). Contextual influence on orientation discrimination of humans and responses of neurons in V1 of alert monkeys. Journal of Neurophysiology, 83(2), 941-954. Retrieved from http://jn.physiology.org/content/83/2/941.long.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Li, W, Author
Thier, P, Author
Wehrhahn, C1, Author           
Affiliations:
1Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497798              

Content

show
hide
Free keywords: -
 Abstract: We studied the effects of various patterns as contextual stimuli on human orientation discrimination, and on responses of neurons in V1 of alert monkeys. When a target line is presented along with various contextual stimuli (masks), human orientation discrimination is impaired. For most V1 neurons, responses elicited by a line in the receptive field (RF) center are suppressed by these contextual patterns. Orientation discrimination thresholds of human observers are elevated slightly when the target line is surrounded by orthogonal lines. For randomly oriented lines, thresholds are elevated further and even more so for lines parallel to the target. Correspondingly, responses of most V1 neurons to a line are suppressed. Although contextual lines inhibit the amplitude of orientation tuning functions of most V1 neurons, they do not systematically alter the tuning width. Elevation of human orientation discrimination thresholds decreases with increasing curvature of masking lines, so does the inhibition of V1 neuronal responses. A mask made of straight lines yields the strongest interference with human orientation discrimination and produces the strongest suppression of neuronal responses. Elevation of human orientation discrimination thresholds is highest when a mask covers only the immediate vicinity of the target line. Increasing the masking area results in less interference. On the contrary, suppression of neuronal responses in V1 increases with increasing mask size. Our data imply that contextual interference observed in human orientation discrimination is in part directly related to contextual inhibition of neuronal activity in V1. However, the finding that interference with orientation discrimination is weaker for larger masks suggests a figure-ground segregation process that is not located in V1.

Details

show
hide
Language(s):
 Dates: 2000-02
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: URI: http://jn.physiology.org/content/83/2/941.long
BibTex Citekey: 93
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Neurophysiology
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 83 (2) Sequence Number: - Start / End Page: 941 - 954 Identifier: -