English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  The Underpinnings of the BOLD Functional Magnetic Resonance Imaging Signal

Logothetis, N. (2003). The Underpinnings of the BOLD Functional Magnetic Resonance Imaging Signal. Journal of Neuroscience, 23(10), 3963-3971. Retrieved from http://www.jneurosci.org/content/23/10/3963.full.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Logothetis, NK1, Author           
Affiliations:
1Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497798              

Content

show
hide
Free keywords: -
 Abstract: The good coverage and high resolution afforded by functional magnetic resonance imaging (fMRI) make it an excellent tool for the noninvasive imaging of the human brain. Equally interesting, however, is the use of this technique in animal studies using high magnetic fields. In the latter case, highly spatiotemporally resolved fMRI can reveal how widespread neural networks are organized, and accompanying electrophysiological recordings can show how small neural assemblies contribute to this organization. By applying fMRI and magnetic resonance spectroscopic imaging (MRS) to the nonhuman primate, the most frequently used laboratory animal for the study of the neural basis of cognition, scientists may be able to investigate levels of neural organization that cannot be studied by electrodes alone. These include (1) long-range interactions between different brain structures, (2) task- and learning-related neurochemical changes by means of localized in vivo spectroscopy or MRS, (3) dynamic connectivity patterns by means of labeling techniques involving MR contrast agents, and (4) plasticity and reorganization after experimentally placed focal lesions. Such applications promise to bridge the gap between human neuroimaging studies and the large body of animal research performed over the last half a century. Ultimately, however, the success of fMRI as a tool for visualizing brain function in humans or animals is crucially dependent on a deeper understanding of the relationship between the observed signal and the underlying neuronal activity that we think it represents. The fMRI technique, like most current brain imaging techniques, capitalizes on the coupling of cerebral blood flow (CBF), energy demand, and neural activity. The interactions between these variables are overwhelmingly complex and involve interrelated factors such as the type of neural activity involved, the cell groups generating this activity, the link between this activity and energy demands, and the processes ultimately coupling the energy demand to the supply of energy to the brain. In this review I will concentrate on only one aspect of this complex issue, namely the type of neural activity that could play a dominant role in the generation of one sort of fMRI signal: the imaging signal capitalizing on the blood oxygen level-dependent (BOLD) contrast mechanism.

Details

show
hide
Language(s):
 Dates: 2003-05
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: URI: http://www.jneurosci.org/content/23/10/3963.full
BibTex Citekey: 2627
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Neuroscience
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 23 (10) Sequence Number: - Start / End Page: 3963 - 3971 Identifier: -