English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  S-cones contribute to flicker brightness in human vision

Wehrhahn, C., Hill, N., & Dillenburger, B. (2004). S-cones contribute to flicker brightness in human vision. Poster presented at 34th Annual Meeting of the Society for Neuroscience (Neuroscience 2004), San Diego, CA, USA.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Wehrhahn, C1, Author           
Hill, NJ2, Author           
Dillenburger, B1, Author           
Affiliations:
1Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497798              
2Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497795              

Content

show
hide
Free keywords: -
 Abstract: In the retina of primates three cone types sensitive to short, middle and long wavelengths of light convert photons into electrical signals. Many investigators have presented evidence that, in color normal observers, the signals of cones sensitive to short wavelengths of light (S-cones) do not contribute to the perception of brightness of a colored surface when this is alternated with an achromatic reference (flicker brightness). Other studies indicate that humans do use S-cone signals when performing this task. Common to all these studies is the small number of observers, whose performance data are reported. Considerable variability in the occurrence of cone types across observers has been found, but, to our knowledge, no cone counts exist from larger populations of humans. We reinvestigated how much the S-cones contribute to flicker brightness. 76 color normal observers were tested in a simple psychophysical procedure neutral to the cone type occurence (Teufel Wehrhahn (2000), JOSA A 17: 994 - 1006). The data show that, in the majority of our observers, S-cones provide input with a negative sign - relative to L- and M-cone contribution - in the task in question. There is indeed considerable between-subject variability such that for 20 out of 76 observers the magnitude of this input does not differ significantly from 0. Finally, we argue that the sign of S-cone contribution to flicker brightness perception by an observer cannot be used to infer the relative sign their contributions to the neuronal signals carrying the information leading to the perception of flicker brightness. We conclude that studies which use only a small number of observers may easily fail to find significant evidence for the small but significant population tendency for the S-cones to contribute to flicker brightness. Our results confirm all earlier results and reconcile their contradictory interpretations.

Details

show
hide
Language(s):
 Dates: 2004-10
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: URI: http://www.sfn.org/absarchive/
BibTex Citekey: 3031
 Degree: -

Event

show
hide
Title: 34th Annual Meeting of the Society for Neuroscience (Neuroscience 2004)
Place of Event: San Diego, CA, USA
Start-/End Date: -

Legal Case

show

Project information

show

Source

show