English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Graph Kernels for Chemical Informatics

Ralaivola, L., Swamidass JS, Saigo, H., & Baldi, P. (2005). Graph Kernels for Chemical Informatics. Neural Networks, 18(8), 1093-1110. doi:10.1016/j.neunet.2005.07.009.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Ralaivola, L, Author
Swamidass JS, Saigo, H1, Author           
Baldi, P, Author
Affiliations:
1Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497795              

Content

show
hide
Free keywords: -
 Abstract: Increased availability of large repositories of chemical compounds is creating new challenges and opportunities for the application of machine learning methods to problems in computational chemistry and chemical informatics. Because chemical compounds are often represented by the graph of their covalent bonds, machine learning methods in this domain must be capable of processing graphical structures with variable size. Here we first briefly review the literature on graph kernels and then introduce three new kernels (Tanimoto, MinMax, Hybrid) based on the idea of molecular fingerprints and counting labeled paths of depth up to d using depthfirst search from each possible vertex. The kernels are applied to three classification problems to predict mutagenicity, toxicity, and anti-cancer activity on three publicly available data sets. The kernels achieve performances at least comparable, and most often superior, to those previously reported in the literature reaching accuracies of 91.5 on the Mutag dataset, 65-67 on the PTC (Predictive Toxicology Challenge) dataset, and 72 on the NCI (National Cancer Institute) dataset. Properties and tradeoffs of these kernels, as well as other proposed kernels that leverage 1D or 3D representations of molecules, are briefly discussed.

Details

show
hide
Language(s):
 Dates: 2005
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Neural Networks
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 18 (8) Sequence Number: - Start / End Page: 1093 - 1110 Identifier: -