English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Mid-level motion features for the recognition of biological movements

Sigala, R., Serre T, Poggio, T., & Casile, A. (2005). Mid-level motion features for the recognition of biological movements. Poster presented at 28th European Conference on Visual Perception, A Coruña, Spain.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Sigala, RA1, Author           
Serre T, Poggio, T, Author
Casile, A, Author
Affiliations:
1Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497798              

Content

show
hide
Free keywords: -
 Abstract: Recognition of biological motion probably needs the integration of form and motion information. For recognition and categorisation of complex static shapes, recognition performance can be significantly increased by optimisation of the extracted mid-level form features. Several algorithms for the learning of optimised mid-level features from image data have been proposed. It seems likely that the visual recognition of complex movements is also based on optimised features. Exploiting a new physiologically inspired algorithm and classical unsupervised learning methods, we have tried to determine mid-level motion features that are maximally useful for the recognition of body movements from image sequences. We optimised mid-level neural detectors in a hierarchical model for the recognition of human actions (Giese and Poggio, 2003 Nature Reviews Neuroscience 4 179 - 192) by unsupervised learning. Learning is based on a memory trace learning rule: Each detector is associated with a memory variable that increases when the detector is activated during correct classifications, and that decreases otherwise. Detectors whose memory variable falls below a critical threshold 'die', and are eliminated from the model. In addition, we tested a classical principal-components approach. The model is trained with movies showing different human actions, from which optic flow fields are computed. The tested learning algorithms extract mid-level motion features that lead to a substantial improvement of the recognition performance. For the special case of walking, many of the extracted motion features are characterised by horizontal opponent motion. This result is consistent with psychophysical data showing that opponent horizontal motion is a dominant mid-level feature that accounts for high recognition rates, even for strongly impoverished stimuli (Casile and Giese, 2005 Journal of Vision 5 348 - 360). As for the categorisation of static shapes, recognition performance for human actions is improved by choosing optimised mid-level features. The learned features might predict receptive field properties of complex motion-selective neurons (eg in area KO/V3B).

Details

show
hide
Language(s):
 Dates: 2005-08
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: URI: http://www.perceptionweb.com/abstract.cgi?id=v050627
BibTex Citekey: 5550
 Degree: -

Event

show
hide
Title: 28th European Conference on Visual Perception
Place of Event: A Coruña, Spain
Start-/End Date: -

Legal Case

show

Project information

show

Source

show