Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Classification of natural scenes using global image statistics

Drewes, J., Wichmann, F., & Gegenfurtner, K. (2005). Classification of natural scenes using global image statistics. Poster presented at Fifth Annual Meeting of the Vision Sciences Society (VSS 2005), Sarasota, FL, USA.

Item is

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Drewes, J, Autor
Wichmann, FA1, Autor           
Gegenfurtner, KR2, Autor           
Affiliations:
1Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497795              
2Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497797              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: The algorithmic classification of complex, natural scenes is generally considered a difficult task due to the large amount of information conveyed by natural images. Work by Simon Thorpe and colleagues showed that humans are capable of detecting animals within novel natural scenes with remarkable speed and accuracy. This suggests that the relevant information for classification can be extracted at comparatively limited computational cost. One hypothesis is that global image statistics such as the amplitude spectrum could underly fast image classification (Johnson Olshausen, Journal of Vision, 2003; Torralba Oliva, Network: Comput. Neural Syst., 2003). We used linear discriminant analysis to classify a set of 11.000 images into animal and non-animal images. After applying a DFT to the image, we put the Fourier spectrum into bins (8 orientations with 6 frequency bands each). Using all bins, classification performance on the Fourier spectrum reached 70. However, performance was similar (67) when only the high spatial frequency information was used and decreased steadily at lower spatial frequencies, reaching a minimum (50) for the low spatial frequency information. Similar results were obtained when all bins were used on spatially filtered images. A detailed analysis of the classification weights showed that a relatively high level of performance (67) could also be obtained when only 2 bins were used, namely the vertical and horizontal orientation at the highest spatial frequency band. Our results show that in the absence of sophisticated machine learning techniques, animal detection in natural scenes is limited to rather modest levels of performance, far below those of human observers. If limiting oneself to global image statistics such as the DFT then mostly information at the highest spatial frequencies is useful for the task. This is analogous to the results obtained with human observers on filtered images (Kirchner et al, VSS 2004).

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2005-09
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: URI: http://www.journalofvision.org/5/8/602/
DOI: 10.1167/5.8.602
BibTex Citekey: 4469
 Art des Abschluß: -

Veranstaltung

einblenden:
ausblenden:
Titel: Fifth Annual Meeting of the Vision Sciences Society (VSS 2005)
Veranstaltungsort: Sarasota, FL, USA
Start-/Enddatum: -

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle

einblenden: