English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Development of midline cell types and commissural axon tracts requires Fgfr1 in the cerebrum.

Tole, S., Gutin G, Bhatnagar L, Remedios, R., & Hebert, J. (2006). Development of midline cell types and commissural axon tracts requires Fgfr1 in the cerebrum. Developmental Biology, 289(1), 141-151. doi:10.1016/j.ydbio.2005.10.020.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Tole, S, Author
Gutin G, Bhatnagar L, Remedios, R1, Author           
Hebert, JM, Author
Affiliations:
1Research Group Physiology of Sensory Integration, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497808              

Content

show
hide
Free keywords: -
 Abstract: The adult cerebral hemispheres are connected to each other by specialized midline cell types and by three axonal tracts: the corpus callosum, the hippocampal commissure, and the anterior commissure. Many steps are required for these tracts to form, including early patterning and later axon pathfinding steps. Here, the requirement for FGF signaling in forming midline cell types and commissural axon tracts of the cerebral hemispheres is examined. Fgfr1, but not Fgfr3, is found to be essential for establishing all three commissural tracts. In an Fgfr1 mutant, commissural neurons are present and initially project their axons, but these fail to cross the midline that separates the hemispheres. Moreover, midline patterning defects are observed in the mutant. These defects include the loss of the septum and three specialized glial cell types, the indusium griseum glia, midline zipper glia, and glial wedge. Our findings demonstrate that FGF signaling is required for generating telencephalic midline structures, in par ticular septal and glial cell types and all three cerebral commissures. In addition, analysis of the Fgfr1 heterozygous mutant, in which midline patterning is normal but commissural defects still occur, suggests that at least two distinct FGF-dependent mechanisms underlie the formation of the cerebral commissures.

Details

show
hide
Language(s):
 Dates: 2006-01
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Developmental Biology
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 289 (1) Sequence Number: - Start / End Page: 141 - 151 Identifier: -