English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Functional Imaging Reveals Numerous Fields in the Monkey Auditory Cortex

Petkov, C., Kayser, C., Augath, M., & Logothetis, N. (2006). Functional Imaging Reveals Numerous Fields in the Monkey Auditory Cortex. PLoS Biology, 4(7), 1213-1226. doi:10.1371/journal.pbio.0040215.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Petkov, C1, Author           
Kayser, C1, 2, Author           
Augath, M1, Author           
Logothetis, N1, Author           
Affiliations:
1Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497798              
2Research Group Physiology of Sensory Integration, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497808              

Content

show
hide
Free keywords: -
 Abstract: Anatomical studies propose that the primate auditory cortex contains more fields than have actually been functionally confirmed or described. Spatially resolved functional magnetic resonance imaging (fMRI) with carefully designed acoustical stimulation could be ideally suited to extend our understanding of the processing within these fields. However, after numerous experiments in humans, many auditory fields remain poorly characterized. Imaging the macaque monkey is of particular interest as these species have a richer set of anatomical and neurophysiological data to clarify the source of the imaged activity. We functionally mapped the auditory cortex of behaving and of anesthetized macaque monkeys with high resolution fMRI. By optimizing our imaging and stimulation procedures, we obtained robust activity throughout auditory cortex using tonal and band-passed noise sounds. Then, by varying the frequency content of the sounds, spatially specific activity patterns were observed over this region. As a result, the activity patterns could be assigned to many auditory cortical fields, including those whose functional properties were previously undescribed. The results provide an extensive functional tessellation of the macaque auditory cortex and suggest that 11 fields contain neurons tuned for the frequency of sounds. This study provides functional support for a model where three fields in primary auditory cortex are surrounded by eight neighboring “belt” fields in non-primary auditory cortex. The findings can now guide neurophysiological recordings in the monkey to expand our understanding of the processing within these fields. Additionally, this work will improve fMRI investigations of the human auditory cortex.

Details

show
hide
Language(s):
 Dates: 2006-07
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: PLoS Biology
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 4 (7) Sequence Number: - Start / End Page: 1213 - 1226 Identifier: -