English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Orientation tuning of the local field potential and multi-unit activity in the primary visual cortex of the macaque

Berens, P., Keliris, G., Ecker, A., Logothetis, N., & Tolias, A. (2007). Orientation tuning of the local field potential and multi-unit activity in the primary visual cortex of the macaque. Poster presented at 31st Göttingen Neurobiology Conference, Göttingen, Germany.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Berens, P1, Author           
Keliris, GA2, Author           
Ecker, AS1, Author           
Logothetis, NK2, Author           
Tolias, AS2, Author           
Affiliations:
1Research Group Computational Vision and Neuroscience, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497805              
2Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497798              

Content

show
hide
Free keywords: -
 Abstract: Oscillations in the local field potential (LFP) are abundant across species and brain regions. The possible relationship of these low-frequency extracelluar voltage fluctuations with the activity of the underlying local population of neurons remains largely elusive. To study this relationship, we used an array of chronically implanted tetrodes spanning a distance of 700 μm and simultaneously recorded action potentials from multiple well-isolated single units, multi unit activity (MUA) and LFP from area V1 of the awake, behaving macaque. Moving and static gratings of different orientations were used for visual stimulation. In agreement with previous studies we find that the increase of LFP gamma-band power is a function of the orientation of the stimulus. However, the power of the gamma-band contains much less information about the orientation of the stimulus than the MUA and SUA recorded at the same site (Figure 1A). The average discriminability d‘ between preferred and orthogonal orientation was 2.46 for MUA, 2.45 for SUA and 1.01 for the LFP. Moreover, in contrast to recent results from area MT (Liu and Newsome, 2006) we find only a weak correlation between the preferred orientation of the MUA tuning function and that of the LFP (Figure 1B, different colors indicate different animals). Interestingly, all nearby LFP recording sites in our array were tuned to a similar orientation while the preferred orientations of MUA tuning functions were widely scattered. These results suggest that the power of LFP signals does not capture local population activity at the scale of orientation columns in area V1.

Details

show
hide
Language(s):
 Dates: 2007-04
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: URI: http://www.neuro.uni-goettingen.de/nbc.php?sel=archiv
BibTex Citekey: 4273
 Degree: -

Event

show
hide
Title: 31st Göttingen Neurobiology Conference
Place of Event: Göttingen, Germany
Start-/End Date: -

Legal Case

show

Project information

show

Source

show