English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Optimized spectrally selective steady-state free precession sequences for cartilage imaging at ultra-high fields

Bieri, O., Mamisch TC, Trattnig S, Kraff O, Ladd, M., & Scheffler, K. (2008). Optimized spectrally selective steady-state free precession sequences for cartilage imaging at ultra-high fields. Magnetic Resonance Materials in Physics, Biology and Medicine, 21(1-2), 87-94. doi:10.1007/s10334-007-0092-0.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Bieri, O, Author
Mamisch TC, Trattnig S, Kraff O, Ladd, ME, Author
Scheffler, K1, Author           
Affiliations:
1Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497796              

Content

show
hide
Free keywords: -
 Abstract: Object Fat suppressed 3D steady-state free precession (SSFP) sequences are of special interest in cartilage imaging due to their short repetition time in combination with high signal-to-noise ratio. At low-to-high fields (1.5–2.0 T), spectral spatial (spsp) radio frequency (RF) pulses perform superiorly over conventional saturation of the fat signal (FATSAT pulses). However, ultra-high fields (7.0 T and more) may offer alternative fat suppression techniques as a result of the increased chemical shift. Materials and methods Application of a single, frequency selective, RF pulse is compared to spsp excitation for water (or fat) selective imaging at 7.0 T. Results For SSFP, application of a single frequency selective RF pulse for selective water or fat excitation performs beneficially over the commonly applied spsp RF pulses. In addition to the overall improved fat suppression, the application of single RF pulses leads to decreased power depositions, still representing one of the major restrictions in the design and application of many pulse sequences at ultra-high fields. Conclusion The ease of applicability and implementation of single frequency selective RF pulses at ultra-high-fields might be of great benefit for a vast number of applications where fat suppression is desirable or fat–water separation is needed for quantification purposes.

Details

show
hide
Language(s):
 Dates: 2008-03
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Magnetic Resonance Materials in Physics, Biology and Medicine
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 21 (1-2) Sequence Number: - Start / End Page: 87 - 94 Identifier: -