English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Transient and sustained BOLD responses to sustained visual stimulation

Uludag, K. (2008). Transient and sustained BOLD responses to sustained visual stimulation. Magnetic Resonance Imaging, 26(7), 863-869. doi:10.1016/j.mri.2008.01.049.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Uludag, K1, Author           
Affiliations:
1Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497796              

Content

show
hide
Free keywords: -
 Abstract: Examining the transients of the blood-oxygenation-level-dependent (BOLD) signal using functional magnetic resonance imaging is a tool to probe basic brain physiology. In addition to the so-called initial dip and poststimulus undershoot of the BOLD signal, occasionally, overshoot at the beginning and at the end of stimulation and stimulus onset and offset (‘phasic’) responses are observed. Hemifield visual stimulation was used in human subjects to study the latter transients. As expected, sustained (‘tonic’) stimulus-correlated contralateral activation in the visual cortex and LGN was observed. Interestingly, bilateral phasic responses were observed, which only partly overlapped with the tonic network and which would have been missed using a standard analysis. A biomechanical model of the BOLD signal (‘balloon model’) indicated that, in addition to phasic neuronal activity, vascular uncoupling can also give rise to phasic BOLD signals. Thus, additional physiological information (i.e., cerebral blood flow ) and examination of spatial distribution of the activity might help to assess the BOLD signal transients correctly. In the current study, although vascular uncoupled responses cannot be ruled out as an explanation of the observed phasic BOLD network, the spatial distribution argues that sustained hemifield visual stimulation evokes both bilateral phasic and contralateral sustained neuronal responses. As a consequence, in rapid event-related experimental designs, both the phasic and tonic networks cannot be separated, possibly confounding the interpretation of BOLD signal data. Furthermore, a combination of phasic and tonic responses in the same region of interest might also mimic a BOLD response typically observed in adaptation experiments.

Details

show
hide
Language(s):
 Dates: 2008-09
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Magnetic Resonance Imaging
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 26 (7) Sequence Number: - Start / End Page: 863 - 869 Identifier: -