English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Bayesian estimation of orientation preference maps

Macke, J., Gerwinn, S., White L, Kaschube, M., & Bethge, M. (2009). Bayesian estimation of orientation preference maps. Poster presented at Computational and Systems Neuroscience Meeting (COSYNE 2009), Salt Lake City, UT, USA.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Macke, J1, 2, Author           
Gerwinn, S1, 2, Author           
White L, Kaschube, M, Author
Bethge, M1, Author           
Affiliations:
1Research Group Computational Vision and Neuroscience, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497805              
2Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497795              

Content

show
hide
Free keywords: -
 Abstract: Neurons in the early visual cortex of mammals exhibit a striking organization with respect to their functional properties. A prominent example is the layout of orientation preferences in primary visual cortex, the orientation preference map (OPM). Functional imaging techniques, such as optical imaging of intrinsic signals have been used extensively for the measurement of OPMs. As the signal-to-noise ratio in individual pixels if often low, the signals are usually spatially smoothed with a fixed linear filter to obtain an estimate of the functional map. Here, we consider the estimation of the map from noisy measurements as a Bayesian inference problem. By combining prior knowledge about the structure of OPMs with experimental measurements, we want to obtain better estimates of the OPM with smaller trial numbers. In addition, the use of an explicit, probabilistic model for the data provides a principled framework for setting parameters and smoothing. We model the underlying map as a bivariate Gaussian process (GP, a.k.a. Gaussian random field), with a prior covariance function that reflects known properties of OPMs. The posterior mean of the map can be interpreted as an optimally smoothed map. Hyper-parameters of the model can be chosen by optimization of the marginal likelihood. In addition, the GP also returns a predicted map for any location, and can therefore be used for extending the map to pixel at which no, or only unreliable data was obtained. We also obtain a posterior distribution over maps, from which we can estimate the posterior uncertainty of statistical properties of the maps, such as the pinwheel density. Finally, our probabilistic model of both the signal and the noise can be used for decoding, and for estimating the informational content of the map.

Details

show
hide
Language(s):
 Dates: 2009-03
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Degree: -

Event

show
hide
Title: Computational and Systems Neuroscience Meeting (COSYNE 2009)
Place of Event: Salt Lake City, UT, USA
Start-/End Date: -

Legal Case

show

Project information

show

Source

show