English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Dissociable Perceptual Effects of Visual Adaptation

Müller, K.-M., Schillinger, F., Do, D., & Leopold, D. (2009). Dissociable Perceptual Effects of Visual Adaptation. PLoS ONE, 4(7), 1-8. doi:10.1371/journal.pone.0006183.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Müller, K-M1, Author           
Schillinger, F1, Author           
Do, DH, Author
Leopold, DA2, Author           
Affiliations:
1Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497797              
2Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497798              

Content

show
hide
Free keywords: -
 Abstract: Neurons in the visual cortex are responsive to the presentation of oriented and curved line segments, which are thought to act as primitives for the visual processing of shapes and objects. Prolonged adaptation to such stimuli gives rise to two related perceptual effects: a slow change in the appearance of the adapting stimulus (perceptual drift), and the distortion of subsequently presented test stimuli (adaptational aftereffects). Here we used a psychophysical nulling technique to dissociate and quantify these two classical observations in order to examine their underlying mechanisms and their relationship to one another. In agreement with previous work, we found that during adaptation horizontal and vertical straight lines serve as attractors for perceived orientation and curvature. However, the rate of perceptual drift for different stimuli was not predictive of the corresponding aftereffect magnitudes, indicating that the two perceptual effects are governed by distinct neural processes. Finally, the rate of perceptual drift for curved line segments did not depend on the spatial scale of the stimulus, suggesting that its mechanisms lie outside strictly retinotopic processing stages. These findings provide new evidence that the visual system relies on statistically salient intrinsic reference stimuli for the processing of visual patterns, and point to perceptual drift as an experimental window for studying the mechanisms of visual perception.

Details

show
hide
Language(s):
 Dates: 2009-07
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: PLoS ONE
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 4 (7) Sequence Number: - Start / End Page: 1 - 8 Identifier: -