English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Thermodynamic efficiency of information and heat flow

Allahverdyan, A., Janzing, D., & Mahler, G. (2009). Thermodynamic efficiency of information and heat flow. Journal of Statistical Mechanics: Theory and Experiment, 2009(P09011), 1-35. doi:10.1088/1742-5468/2009/09/P09011.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Allahverdyan, AE, Author
Janzing, D1, Author           
Mahler, G, Author
Affiliations:
1Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497795              

Content

show
hide
Free keywords: -
 Abstract: A basic task of information processing is information transfer (flow). P0 Here we study a pair of Brownian particles each coupled to a thermal bath at temperatures T1 and T2 . The information flow in such a system is defined via the time-shifted mutual information. The information flow nullifies at equilibrium, and its efficiency is defined as the ratio of the flow to the total entropy production in the system. For a stationary state the information flows from higher to lower temperatures, and its efficiency is bounded from above by (max[T1 , T2 ])/(|T1 amp;amp;amp;amp;amp;8722; T2 |). This upper bound is imposed by the second law and it quantifies the thermodynamic cost for information flow in the present class of systems. It can be reached in the adiabatic situation, where the particles have widely different characteristic times. The efficiency of heat flow—defined as the heat flow over the total amount of dissipated heat—is limited from above by the same factor. There is a complementarity between heat and information flow: the set-up which is most efficient for the former is the least efficient for the latter and vice versa. The above bound for the efficiency can be (transiently) overcome in certain non-stationary situations, but the efficiency is still limited from above. We study yet another measure of information processing (transfer entropy) proposed in the literature. Though this measure does not require any thermodynamic cost, the information flow and transfer entropy are shown to be intimately related for stationary states.

Details

show
hide
Language(s):
 Dates: 2009-09
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Statistical Mechanics: Theory and Experiment
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 2009 (P09011) Sequence Number: - Start / End Page: 1 - 35 Identifier: -