English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Time-resolved three-dimensional (3D) phase-contrast (PC) balanced steady-state free precession (bSSFP)

Santini, F., Wetzel SG, Bock J, Markl, M., & Scheffler, K. (2009). Time-resolved three-dimensional (3D) phase-contrast (PC) balanced steady-state free precession (bSSFP). Magnetic Resonance in Medicine, 62(4), 966-974. doi:10.1002/mrm.22087.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Santini, F, Author
Wetzel SG, Bock J, Markl, M, Author
Scheffler, K1, Author           
Affiliations:
1Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497796              

Content

show
hide
Free keywords: -
 Abstract: In this study the feasibility of a time-resolved, three-dimensional (3D), three-directional flow-sensitive balanced steady-state free precession (bSSFP) sequence is demonstrated. Due to its high signal-to-noise ratio (SNR) in blood and cerebrospinal fluid (CSF) this type of sequence is particularly effective for acquisition of blood and CSF flow velocities. Flow sensitivity was achieved with the phase-contrast (PC) technique, implementing a custom algorithm for calculation of optimal gradient parameters. Techniques to avoid the most important sources of bSSFP-related artifacts (including distortion due to eddy currents and signal voids due to flow-related steady-state disruption) are also presented. The technique was validated by means of a custom flow phantom, and in vivo experiments on blood and CSF were performed to demonstrate the suitability of this sequence for human studies. Accurate depiction of blood flow in the cerebral veins and of CSF flow in the cervical portion of the neck was obtained. Possible applications of this technique might include the study of CSF flow patterns, direct in vivo study of pathologies such as hydrocephalus and Chiari malformation, and validation for the existing CSF circulation model.

Details

show
hide
Language(s):
 Dates: 2009-10
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: URI: http://onlinelibrary.wiley.com/doi/10.1002/mrm.22087/pdf
DOI: 10.1002/mrm.22087
BibTex Citekey: SantiniWBMS2009
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Magnetic Resonance in Medicine
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 62 (4) Sequence Number: - Start / End Page: 966 - 974 Identifier: -