English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Echo-dephased steady state free precession

Patil, S., Bieri, O., & Scheffler, K. (2009). Echo-dephased steady state free precession. Magnetic Resonance Materials in Physics, Biology and Medicine, 22(5), 277-285. doi:10.1007/s10334-009-0173-3.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Patil, S, Author
Bieri, O, Author
Scheffler, K1, Author           
Affiliations:
1Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497796              

Content

show
hide
Free keywords: -
 Abstract: Objective To introduce a novel positive contrast method for passive localization and visualization of paramagnetic susceptibility markers. Materials and methods The novel approach is based on an echo-dephased steady-state free precession (SSFP) sequence. Gradients dephase any signal by ±π at the centered echo-time (TE = TR/2) and induce a total dephasing of ±2π per pixel within TR. This ensures that background tissues do not contribute to signal formation and thus appear dark. However, within the close vicinity of the paramagnetic marker, local gradient fields compensate for the intrinsic dephasing to form an echo. Conceptual issues of gradient compensation and its visualization characteristics are analyzed. The feasibility of the proposed technique for MR-guided intravascular interventions is demonstrated using flow phantom. Results Echo-dephased SSFP is able to localize and visualize paramagnetic marker with excellent suppression of the background signals. The flow phantom experiments concluded that reliable tracking of the interventional guidewire is feasible using echo-dephased SSFP. Conclusion With newly introduced echo-dephased SSFP approach, accurate and reliable visualization of paramagnetic interventional device is feasible.

Details

show
hide
Language(s):
 Dates: 2009-10
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Magnetic Resonance Materials in Physics, Biology and Medicine
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 22 (5) Sequence Number: - Start / End Page: 277 - 285 Identifier: -