English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Decorrelated Neuronal Firing in Cortical Microcircuits

Ecker, A., Berens, P., Keliris, G., Bethge, M., Logothetis, N., & Tolias, A. (2010). Decorrelated Neuronal Firing in Cortical Microcircuits. Science, 327(5965), 584-587. doi:10.1126/science.1179867.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Ecker, AS1, Author           
Berens, P1, Author           
Keliris, GA2, Author           
Bethge, M1, Author           
Logothetis, NK2, Author           
Tolias, AS2, Author           
Affiliations:
1Research Group Computational Vision and Neuroscience, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497805              
2Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497798              

Content

show
hide
Free keywords: -
 Abstract: Correlated trial-to-trial variability in the activity of cortical neurons is thought to reflect the functional connectivity of the circuit. Many cortical areas are organized into functional columns, in which neurons are believed to be densely connected and to share common input. Numerous studies report a high degree of correlated variability between nearby cells. We developed chronically implanted multitetrode arrays offering unprecedented recording quality to reexamine this question in the primary visual cortex of awake macaques. We found that even nearby neurons with similar orientation tuning show virtually no correlated variability. Our findings suggest a refinement of current models of cortical microcircuit architecture and function: Either adjacent neurons share only a few percent of their inputs or, alternatively, their activity is actively decorrelated.

Details

show
hide
Language(s):
 Dates: 2010-01
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Science
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 327 (5965) Sequence Number: - Start / End Page: 584 - 587 Identifier: -