de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Client–Server Multitask Learning From Distributed Datasets

Dinuzzo, F., Pillonetto, G., & De Nicolao, G. (2011). Client–Server Multitask Learning From Distributed Datasets. IEEE Transactions on Neural Networks, 22(2), 290-303. doi:10.1109/TNN.2010.2095882.

Item is

Basisdaten

einblenden: ausblenden:
Datensatz-Permalink: http://hdl.handle.net/11858/00-001M-0000-0013-BC84-B Versions-Permalink: http://hdl.handle.net/11858/00-001M-0000-0013-BC85-9
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Dinuzzo, F1, Autor              
Pillonetto, G, Autor
De Nicolao, G, Autor
Affiliations:
1Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society, escidoc:1497795              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: A client-server architecture to simultaneously solve multiple learning tasks from distributed datasets is described. In such architecture, each client corresponds to an individual learning task and the associated dataset of examples. The goal of the architecture is to perform information fusion from multiple datasets while preserving privacy of individual data. The role of the server is to collect data in real time from the clients and codify the information in a common database. Such information can be used by all the clients to solve their individual learning task, so that each client can exploit the information content of all the datasets without actually having access to private data of others. The proposed algorithmic framework, based on regularization and kernel methods, uses a suitable class of “mixed effect” kernels. The methodology is illustrated through a simulated recommendation system, as well as an experiment involving pharmacological data coming from a multicentric clinical trial.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2011-02
 Publikationsstatus: Im Druck publiziert
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1109/TNN.2010.2095882
BibTex Citekey: DinuzzoPD2011
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: IEEE Transactions on Neural Networks
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 22 (2) Artikelnummer: - Start- / Endseite: 290 - 303 Identifikator: -