English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Batch-Mode Active-Learning Methods for the Interactive Classification of Remote Sensing Images

Demir, B., Persello, C., & Bruzzone, L. (2011). Batch-Mode Active-Learning Methods for the Interactive Classification of Remote Sensing Images. IEEE Transactions on Geoscience and Remote Sensing, 49(3), 1014-1031. doi:10.1109/TGRS.2010.2072929.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Demir, B, Author
Persello, C1, Author           
Bruzzone, L, Author
Affiliations:
1Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497795              

Content

show
hide
Free keywords: -
 Abstract: This paper investigates different batch-mode active-learning (AL) techniques for the classification of remote sensing (RS) images with support vector machines. This is done by generalizing to multiclass problem techniques defined for binary classifiers. The investigated techniques exploit different query functions, which are based on the evaluation of two criteria: uncertainty and diversity. The uncertainty criterion is associated to the confidence of the supervised algorithm in correctly classifying the considered sample, while the diversity criterion aims at selecting a set of unlabeled samples that are as more diverse (distant one another) as possible, thus reducing the redundancy among the selected samples. The combination of the two criteria results in the selection of the potentially most informative set of samples at each iteration of the AL process. Moreover, we propose a novel query function that is based on a kernel-clustering technique for assessing the diversity of samples and a new strategy for selecting the most informative representative sample from each cluster. The investigated and proposed techniques are theoretically and experimentally compared with state-of-the-art methods adopted for RS applications. This is accomplished by considering very high resolution multispectral and hyperspectral images. By this comparison, we observed that the proposed method resulted in better accuracy with respect to other investigated and state-of-the art methods on both the considered data sets. Furthermore, we derived some guidelines on the design of AL systems for the classification of different types of RS images.

Details

show
hide
Language(s):
 Dates: 2011-03
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: IEEE Transactions on Geoscience and Remote Sensing
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 49 (3) Sequence Number: - Start / End Page: 1014 - 1031 Identifier: -