English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  A 3D in vitro bone organ model using human progenitor cells

Papadimitropoulos, A., Scherberich, A., Güven, S., Theilgaard, N., Crooijmans, H., Santini, F., et al. (2011). A 3D in vitro bone organ model using human progenitor cells. European Cells & Materials, 21, 445-458. doi:10.22203/eCM.v021a33.

Item is

Files

show Files

Locators

show
hide
Description:
-
OA-Status:

Creators

show
hide
 Creators:
Papadimitropoulos, A, Author
Scherberich, A, Author
Güven, S, Author
Theilgaard, N, Author
Crooijmans, HJA, Author
Santini, F, Author
Scheffler, K1, Author           
Zallone, A, Author
Martin, I, Author
Affiliations:
1University Hospital Basel, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: Three-dimensional (3D) organotypic culture models based on human cells may reduce the use of complex and costly animal models, while gaining clinical relevance. This study aimed at developing a 3D osteoblastic-osteoclastic-endothelial cell co-culture system, as an in vitro model to mimic the process of bone turnover. Osteoprogenitor and endothelial lineage cells were isolated from the stromal vascular fraction (SVF) of human adipose tissue, whereas CD14+ osteoclast progenitors were derived from human peripheral blood. Cells were co-cultured within 3D porous ceramic scaffolds using a perfusion-based bioreactor device, in the presence of typical osteoclastogenic factors. After 3 weeks, the scaffolds contained cells with endothelial (2.0 ±0.3), pre/osteoclastic (14.0 ±1.4) and mesenchymal/osteoblastic (44.0 ±8.4) phenotypes, along with tartrate-resistant acid phosphatase-positive (TRAP+) osteoclastic cells in contact with deposited bone-like matrix. Supernatant analysis demonstrated sustained matrix deposition (by C-terminus procollagen-I propeptides), resorption (by N-terminus collagen-I telopeptides and phosphate levels) and osteoclastic activity (by TRAP-5b) only when SVF and CD14+ cells were co-cultured. Scanning electron microscopy and magnetic resonance imaging confirmed the pattern of matrix deposition and resorption. The effectiveness of Vitamin D in replacing osteoclastogenic factors indicated a functional osteoblast-osteoclast coupling in the system. The formation of human-origin bone-like tissue, blood vessels and osteoclasts upon ectopic implantation validated the functionality of the developed cell types. The 3D co-culture system and the associated non-invasive analytical tools can be used as an advanced model to capture some aspects of the functional coupling of bone-like matrix deposition and resorption and could be exploited toward the engineering of multi-functional bone substitute implants.

Details

show
hide
Language(s):
 Dates: 2011-05
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.22203/eCM.v021a33
BibTex Citekey: PapadimitropoulosSGTCSSZM2011
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: European Cells & Materials
  Abbreviation : eCM
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Davos : AO Research Institute
Pages: - Volume / Issue: 21 Sequence Number: - Start / End Page: 445 - 458 Identifier: ISSN: 1473-2262
CoNE: https://pure.mpg.de/cone/journals/resource/1473-2262