de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Pedestrian Detectability: Predicting Human Perception Performance with Machine Vision

Engel, D., & Curio, C. (2011). Pedestrian Detectability: Predicting Human Perception Performance with Machine Vision. In IEEE Intelligent Vehicles Symposium (IV 2011) (pp. 429-435). Piscataway, NJ, USA: IEEE.

Item is

Basisdaten

einblenden: ausblenden:
Datensatz-Permalink: http://hdl.handle.net/11858/00-001M-0000-0013-BB7E-3 Versions-Permalink: http://hdl.handle.net/11858/00-001M-0000-0013-BB7F-1
Genre: Konferenzbeitrag

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Engel, D1, Autor              
Curio, C1, Autor              
Affiliations:
1Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society, escidoc:1497797              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: How likely is it that a driver notices a person standing on the side of the road? In this paper we introduce the concept of pedestrian detectability. It is a measure of how probable it is that a human observer perceives pedestrians in an image. We acquire a dataset of pedestrians with their associated detectabilities in a rapid detection experiment using images of street scenes. On this dataset we learn a regression function that allows us to predict human detectabilities from an optimized set of image and contextual features. We exploit this function to infer the optimal focus of attention for pedestrian detection. With this combination of human perception and machine vision we propose a method we deem useful for the optimization of Human-Machine-Interfaces in driver assistance systems.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2011-06
 Publikationsstatus: Im Druck publiziert
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: ISBN: 978-1-4577-0890-9
URI: http://www.mrt.uni-karlsruhe.de/iv2011/
DOI: 10.1109/IVS.2011.5940445
BibTex Citekey: EngelC2011_2
 Art des Abschluß: -

Veranstaltung

einblenden:
ausblenden:
Titel: IEEE Intelligent Vehicles Symposium (IV 2011)
Veranstaltungsort: Baden-Baden, Germany
Start-/Enddatum: -

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: IEEE Intelligent Vehicles Symposium (IV 2011)
Genre der Quelle: Konferenzband
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Piscataway, NJ, USA : IEEE
Seiten: - Band / Heft: - Artikelnummer: - Start- / Endseite: 429 - 435 Identifikator: -