de.mpg.escidoc.pubman.appbase.FacesBean
日本語
 
ヘルプ Guide ポリシー/免責事項 連絡先 ログイン
  詳細検索ブラウズ

アイテム詳細

登録内容を編集ファイル形式で保存
 
 
 
 
ダウンロード電子メール
  Navigator based respiratory gating during acquisition and preparation phases for proton liver spectroscopy at 3T

Hock, A., Valkovic L, Boesiger, P., & Henning, A. (2011). Navigator based respiratory gating during acquisition and preparation phases for proton liver spectroscopy at 3T. Poster presented at 28th Annual Scientific Meeting ESMRMB 2011, Leipzig, Germany.

Item is

基本情報

表示: 非表示:
アイテムのパーマリンク: http://hdl.handle.net/11858/00-001M-0000-0013-B9D2-4 版のパーマリンク: http://hdl.handle.net/11858/00-001M-0000-0013-B9D3-2
資料種別: ポスター

ファイル

表示: ファイル

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Hock, A, 著者
Valkovic L, Boesiger, P, 著者
Henning, A1, 著者              
所属:
1Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society, escidoc:1497796              

内容説明

表示:
非表示:
キーワード: -
 要旨: Purpose/Introduction: Proton MR spectroscopy was shown to be suitable for quantification of different lipids and TMA in the human liver but has not yet been recognized as a tool for liver disease diagnostics in the clinical routine. Most severe reasons are B 0 fluctuation and voxel displacement due to breathing of the subject. Therefore, the quality improvement of 1 H liver spectra using real-time navigator based respiratory gating (NG) during acquisition and during preparation phases is demonstrated. Subjects and Methods: After the approval from the local ethics committee, seven volunteers were consecutively measured at 3T (Achieva, Philips Medical Systems) with a 6-element phased array cardiac coil. After applying a survey, a navigator 2 was placed through the right hemi-diaphragm (Fig.1). For accurate localization of the spectroscopy voxel at the end-expiration position, transversal and coronal navigator gated T 2 weighted TSE images were acquired (Fig.1). Standard PRESS (20x20x20mm 3, TR=3000ms, TE=30ms, 64 averages plus 16 averages of unsuppressed water spectra, 1st order FASTERMAP 1 shimming), with CHESS water-suppression (200Hz window) was used for localization. Inner-volume saturation (IVS) was used to minimize the chemical shift dis placement between lipids and water (Fig.1). For comparison, the measurement was done during free breathing: (1) NG during acquisition and preparation phases (1st order FASTERMAP 1-shimming, F 0 determination, receiver gain optimization and water-suppression) (full nav), (2) just NG during acquisition (no prep nav) and (3) no NG (no nav) and then quantified using the ‘liver-6’ setting in LCModel 3. Results: Fig.2 depicts the spectra measured in one volunteer. The quality improvement (FWHM+-SD, SNR+-SD) by adding the navigators can be seen in table 1. Improvement of the spectral quality FWHM SNR no nav 32.6 +- 11.7 14.1 +- 7.7 no prep nav 23.1 +- 4.2 19.3 +- 9.2 full nav 20.6 +- 3.6 20.4 +- 8.4. Discussion/Conclusion: Our study clearly showed that using real-time NG during the measurement (no prep nav) and even more when NG is also used in the preparation phases (full nav) the spectral quality (SNR and FWHM) is improved leading to a more precise metabolite quantification. In addition, by using NG the measurement position is much more accurate, since the measurement is done in the same phase of the breathing cycle. This improves early diagnosis of different liver diseases e.g. tumors. The method is more time demanding than non-gated free breathing, but it is also applicable in non-compliant patients and children.

資料詳細

表示:
非表示:
言語:
 日付: 2011-10
 出版の状態: 紙媒体で出版済み
 ページ: -
 出版情報: -
 目次: -
 査読: -
 識別子(DOI, ISBNなど): URI: http://link.springer.com/content/pdf/10.10072Fs10334-011-0268-5
DOI: 10.1007/s10334-011-0268-5
BibTex参照ID: HockVBH2011
 学位: -

関連イベント

表示:
非表示:
イベント名: 28th Annual Scientific Meeting ESMRMB 2011
開催地: Leipzig, Germany
開始日・終了日: -

訴訟

表示:

Project information

表示:

出版物

表示: