Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Low Error Discrimination using a Correlated Population Code

Schwartz, G., Macke, J., Amodei D, Tang, H., & Berry, M. (2012). Low Error Discrimination using a Correlated Population Code. Journal of Neurophysiology, 108(4), 1069-1088. doi:10.1152/jn.00564.2011.

Item is

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Schwartz, G, Autor
Macke, J1, 2, Autor           
Amodei D, Tang, H, Autor
Berry, MJ, Autor
Affiliations:
1Research Group Computational Vision and Neuroscience, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497805              
2Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497795              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: We explored the manner in which spatial information is encoded by retinal ganglion cell populations. We flashed a set of 36 shape stimuli onto the tiger salamander retina and used different decoding algorithms to read out information from a population of 162 ganglion cells. We compared the discrimination performance of linear decoders, which ignore correlation induced by common stimulation, against nonlinear decoders, which can accurately model these correlations. Similar to previous studies, decoders that ignored correlation suffered only a modest drop in discrimination performance for groups of up to ∼30 cells. However, for more realistic groups of 100+ cells, we found order-of-magnitude differences in the error rate. We also compared decoders that used only the presence of a single spike from each cell against more complex decoders that included information from multiple spike counts and multiple time bins. More complex decoders substantially outperformed simpler decoders, showing the importance of spike timing information. Particularly effective was the first spike latency representation, which allowed zero discrimination errors for the majority of shape stimuli. Furthermore, the performance of nonlinear decoders showed even greater enhancement compared to linear decoders for these complex representations. Finally, decoders that approximated the correlation structure in the population by matching all pairwise correlations with a maximum entropy model fit to all 162 neurons were quite successful, especially for the spike latency representation. Together, these results suggest a picture in which linear decoders allow a coarse categorization of shape stimuli, while nonlinear decoders, which take advantage of both correlation and spike timing, are needed to achieve high-fidelity discrimination.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2012-08
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Journal of Neurophysiology
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 108 (4) Artikelnummer: - Start- / Endseite: 1069 - 1088 Identifikator: -