Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  A Common Neurodynamical Mechanism Could Mediate Externally Induced and Intrinsically Generated Transitions in Visual Awareness

Panagiotaropoulos, T., Kapoor, V., Logothetis, N., & Deco, G. (2013). A Common Neurodynamical Mechanism Could Mediate Externally Induced and Intrinsically Generated Transitions in Visual Awareness. PLoS ONE, 8(1), 1-10. doi:10.1371/journal.pone.0053833.

Item is

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Panagiotaropoulos, TI1, Autor           
Kapoor, V1, Autor           
Logothetis, NK1, Autor           
Deco, G, Autor
Affiliations:
1Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497798              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: The neural correlates of conscious visual perception are commonly studied in paradigms of perceptual multistability that allow multiple perceptual interpretations during unchanged sensory stimulation. What is the source of this multistability in the content of perception? From a theoretical perspective, a fine balance between deterministic and stochastic forces has been suggested to underlie the spontaneous, intrinsically driven perceptual transitions observed during multistable perception. Deterministic forces are represented by adaptation of feature-selective neuronal populations encoding the competing percepts while stochastic forces are modeled as noise-driven processes. Here, we used a unified neuronal competition model to study the dynamics of adaptation and noise processes in binocular flash suppression (BFS), a form of externally induced perceptual suppression, and compare it with the dynamics of intrinsically driven alternations in binocular rivalry (BR). For the first time, we use electrophysiological, biologically relevant data to constrain a model of perceptual rivalry. Specifically, we show that the mean population discharge pattern of a perceptually modulated neuronal population detected in electrophysiological recordings in the lateral prefrontal cortex (LPFC) during BFS, constrains the dynamical range of externally induced perceptual transitions to a region around the bifurcation separating a noise-driven attractor regime from an adaptation-driven oscillatory regime. Most interestingly, the dynamical range of intrinsically driven perceptual transitions during BR is located in the noise-driven attractor regime, where it overlaps with BFS. Our results suggest that the neurodynamical mechanisms of externally induced and spontaneously generated perceptual alternations overlap in a narrow, noise-driven region just before a bifurcation where the system becomes adaptation-driven.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2013-01
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: PLoS ONE
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 8 (1) Artikelnummer: - Start- / Endseite: 1 - 10 Identifikator: -