English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  J-refocused 1H PRESS DEPT for localized 13C MR Spectroscopy

Chen, X., Boesiger, P., & Henning, A. (2013). J-refocused 1H PRESS DEPT for localized 13C MR Spectroscopy. NMR in Biomedicine, Epub ahead. doi:10.1002/nbm.2925.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Chen, X, Author
Boesiger, P, Author
Henning, A1, Author           
Affiliations:
1Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497796              

Content

show
hide
Free keywords: -
 Abstract: Proton point-resolved spectroscopy (PRESS) localization has been combined with distortionless enhanced polarization transfer (DEPT) in multinuclear MRS to overcome the signal contamination problem in image-selected in vivo spectroscopy (ISIS)-combined DEPT, especially for lipid detection. However, homonuclear proton scalar couplings reduce the DEPT enhancement by modifying the spin coherence distribution under J modulation during proton PRESS localization. Herein, a J-refocused proton PRESS-localized DEPT sequence is presented to obtain simultaneously enhanced and localized signals from a large number of metabolites by in vivo 13C MRS. The suppression of J modulation during PRESS and the substantial recovery of signal enhancement by J-refocused PRESS-localized DEPT were demonstrated theoretically by product operator formalism, numerically by the spin density matrix simulations for different scalar coupling conditions, and experimentally with a glutamate phantom at various TEs, as well as a colza oil phantom. The application of the sequence for localized detection of saturated and unsaturated fatty acids in the calf bone marrow and skeletal muscle of healthy subjects yielded high signal enhancements simultaneously obtained for all components.

Details

show
hide
Language(s):
 Dates: 2013-02
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: URI: http://onlinelibrary.wiley.com/doi/10.1002/nbm.2925/pdf
DOI: 10.1002/nbm.2925
BibTex Citekey: ChenBH2013
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: NMR in Biomedicine
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: Epub ahead Sequence Number: - Start / End Page: - Identifier: -